
UNIVERSIDADE FEDERAL DO PARANÁ

RAYSON LAROCA

AN EFFICIENT AND LAYOUT-INDEPENDENT AUTOMATIC LICENSE PLATE

RECOGNITION SYSTEM BASED ON THE YOLO DETECTOR

CURITIBA

2019

RAYSON LAROCA

AN EFFICIENT AND LAYOUT-INDEPENDENT AUTOMATIC LICENSE PLATE

RECOGNITION SYSTEM BASED ON THE YOLO DETECTOR

A dissertation submitted in partial fulfillment of the
requirements for the degree of Master of Science in
Computer Science at the Federal University of Paraná.

Advisor: David Menotti.

CURITIBA

2019

Catalogação na Fonte: Sistema de Bibliotecas, UFPR
Biblioteca de Ciência e Tecnologia

L326e Laroca, Rayson
 An efficient and layout-independent automatic license plate recognition
system based on the Yolo detector [recurso eletrônico] / Rayson Laroca. –
Curitiba, 2019.

 Dissertação - Universidade Federal do Paraná, Setor de Ciências Exatas,
Programa de Pós-Graduação em Informática, 2019.

 Orientador: David Menotti .

 1. Sistemas inteligentes de veículos rodoviários. 2. Sistemas de
recuperação da informação – Rodovias. 3. Redes neurais (Computação). 4.
Yolo (Sistema de detecção de objetos). I. Universidade Federal do Paraná. II.
Menotti, David. III. Título.

CDD: 363.1256

Bibliotecário: Elias Barbosa da Silva CRB-9/1894

To my parents and grandparents.

Acknowledgments

First and foremost, I would like to thank my advisor David Menotti, who has shaped my
perspective as a researcher in many fundamental ways, for his guidance and support. Prof. David
gave me a lot of freedom to explore new ideas and experiment new methods, while provided
critical insights to guide the direction of my research.

I would also like to thank the members of my dissertation committee, Prof. Eduardo Todt
and Prof. Rodrigo Minetto, for the time they spent working on my committee, and for their great
help in improving the quality of this dissertation.

Many thanks to all the people who brought me to academic research, especially
Prof. Alaine Guimarães, Prof. Karine Sato and all the other people at the Infoagro laboratory at
the State University of Ponta Grossa. Without them, I would probably never have made up my
mind to pursue a master’s degree, and I would have missed this great experience in my life.

Late nights and weekends at the laboratory were brought to life by the fellowship of
my colleagues and friends in the Vision, Robotics and Imaging (VRI) Research Group. I have
learned so much from our discussions and I am grateful to have a group of friends who inspire
each other to be the best scientists and human beings we can be.

I would like to express my gratitude to Maria Karolina Ramos, my girlfriend, for her
continued and unfailing love, support and understanding for the past six years. Karol has always
been around in difficult times and helped me keep things in perspective. She brought me peace,
made me smile, and gave me strength all the way through. This work is also dedicated to her.

Last but not least, I would like to thank my parents, grandparents and brothers. My
grandmother Neide did not get to see me complete my master’s degree but would be so proud of
my accomplishments. They all gave me the encouragement and motivation I needed throughout
my studies and always supported me. I am grateful for their unconditional love, support, and
slaps on the wrist. Their dedication has made it possible for me to become the person I am today.

This work was supported by the National Council for Scientific and Technological Devel-
opment (CNPq). The Titan Xp used for this research was donated by the NVIDIA Corporation.

“Artificial Intelligence is the new electricity.”
Andrew Ng

RESUMO

O reconhecimento automático de placas de veículos (ALPR, do inglês Automatic License
Plate Recognition) tem sido um tópico frequente de pesquisa devido às muitas aplicações práticas
tais como cobrança automática de pedágio e aplicação da lei de trânsito. No entanto, muitas das
soluções atuais ainda não são robustas o suficiente para serem aplicadas em situações do mundo
real, dependendo comumente de certas restrições como câmeras ou ângulos de visão específicos,
planos de fundo simples, boas condições de iluminação, entre outras. Esta dissertação apresenta
um sistema ALPR eficiente e independente de layout baseado no detector de objetos de última
geração YOLO (You Only Look Once), que contém uma abordagem unificada para detecção de
placas e classificação de layout para melhorar os resultados de reconhecimento através de regras
de pós-processamento. O sistema é concebido através da avaliação e otimização de diferentes
modelos com várias modificações, visando obter o melhor compromisso de velocidade/precisão
em cada estágio. As Redes Neurais Convolucionais (CNNs, do inglês Convolutional Neural
Networks) são treinadas utilizando imagens de vários conjuntos de dados, com a adição de várias
técnicas de aumento de dados, para que sejam robustas sob diferentes condições (por exemplo,
com variações de iluminação, posição e configurações da câmera, e tipos de veículos). Este
trabalho também introduz um conjunto de dados público para ALPR, chamado UFPR-ALPR,
que inclui 4.500 imagens totalmente anotadas de 150 veículos em cenários do mundo real em que
tanto o veículo quanto a câmera (dentro de outro veículo) estão em movimento. Em comparação
com o conjunto de dados público de placas brasileiras mais empregado para ALPR, o conjunto de
dados proposto tem mais que o dobro de imagens e contém uma variedade maior em diferentes
aspectos. O sistema proposto foi capaz de atingir uma taxa média de reconhecimento de ponta a
ponta de 96.8% em oito conjuntos de dados públicos utilizados nos experimentos, superando
tanto os trabalhos anteriores quanto os sistemas comerciais nos conjuntos de dados ChineseLP,
OpenALPR-EU, SSIG-SegPlate e UFPR-ALPR. Nos demais conjuntos de dados, a abordagem
proposta obteve resultados competitivos ao melhor resultado alcançado pelas linhas de base.
Nosso sistema também alcançou impressionantes taxas de quadros por segundo (FPS, do inglês
Frames Per Second) em uma unidade de processamento gráfico (GPU, do inglês Graphics
Processing Unit) de ponta, sendo capaz de executar em tempo real mesmo quando há 4 veículos
na cena.

Palavras-chave: Reconhecimento de Placas de Veículos, Redes Neurais Convolucionais, YOLO.

ABSTRACT

Automatic License Plate Recognition (ALPR) has been a frequent topic of research
due to many practical applications such as automatic toll collection and traffic law enforcement.
However, many of the current solutions are still not robust enough to be executed on real-world
scenarios, commonly depending on certain constraints such as specific cameras or viewing
angles, simple backgrounds, good lighting conditions, among others. This dissertation presents
an efficient and layout-independent ALPR system based on the state-of-the-art You Only Look
Once (YOLO) object detector that contains a unified approach for License Plate (LP) detection
and layout classification to improve the recognition results using post-processing rules. The
system is conceived by evaluating and optimizing different models with various modifications,
aiming at achieving the best speed/accuracy trade-off at each stage. The Convolutional Neural
Networks (CNNs) are trained using images from several datasets, with the addition of various
data augmentation techniques, so that they are robust under different conditions (e.g., with
variations in lighting, camera position and settings, and vehicle types). This work also introduces
a public dataset for ALPR, called UFPR-ALPR, that includes 4,500 fully annotated images from
150 vehicles in real-world scenarios where both the vehicle and the camera (inside another
vehicle) are moving. Compared to the public dataset of Brazilian LPs most frequently used for
ALPR, our dataset has more than twice the images and contains a larger variety in different
aspects. The proposed system achieved an average end-to-end recognition rate of 96.8% across
eight public datasets (from five different regions) used in the experiments, outperforming both
previous works and commercial systems in the ChineseLP, OpenALPR-EU, SSIG-SegPlate
and UFPR-ALPR datasets. In the other datasets, the proposed approach achieved competitive
results when compared to the best baselines. Our system also achieved impressive Frames Per
Second (FPS) rates on a high-end GPU, being able to perform in real time even when there are
4 vehicles in the scene.

Keywords: Automatic License Plate Recognition, Convolutional Neural Networks, YOLO.

List of Figures

1.1 A usual ALPR system with temporal redundancy at the end 18
1.2 Examples of different LP layouts in the United States 19

2.1 Definition of IoU . 23
2.2 An illustration of two bounding boxes with the same IoU with the ground truth . 24
2.3 An example of different data representations . 24
2.4 An illustration of a deep learning model . 25
2.5 An example of a CNN . 26
2.6 An example of 2-D convolution. 27
2.7 The convolution process . 27
2.8 Comparison between fully connected and convolutional layers 28
2.9 Activation functions. 28
2.10 Max pooling. 29
2.11 Max pooling with downsampling . 29
2.12 An illustration of dropout regularization . 30
2.13 An illustration of data augmentation . 31
2.14 An overview of YOLO . 32
2.15 The YOLO architecture . 33
2.16 Objects predicted by both Fast-YOLO and YOLO in the same image 34
2.17 A limitation of YOLO. 34
2.18 Examples of anchors boxes . 35
2.19 An illustration of two objects and two anchor boxes 36
2.20 Center cells on both odd and even output feature maps 36
2.21 YOLO’s multi-scale training . 37
2.22 A residual block. 39
2.23 Speed/accuracy trade-off of object detectors in the COCO dataset. 41

3.1 The LP detection approach proposed by Li et al. [14] 44
3.2 Three LPs detected with the same IoU value with the ground truth 45
3.3 The LP detection approach proposed by Silva and Jung [33]. 46
3.4 The architecture proposed by Yang et al. [94] for Chinese character recognition . 46
3.5 Artificial LP samples generated in [33] . 47
3.6 The sequence labeling-based approach proposed by Li et al. [14] for LP recognition48

3.7 Illustration of the framework proposed by Zhuang et al. [95] for LP recognition . 49
3.8 Blurred LPs captured by surveillance cameras and their respective reconstructions

based on direct CNN deblurring . 49

4.1 Sample images of the UFPR-ALPR dataset . 51
4.2 Examples of the LP layouts found in the UFPR-ALPR dataset. 52
4.3 Heat maps illustrating the distribution of vehicles and LPs in the SSIG-SegPlate

and UFPR-ALPR datasets. 53
4.4 Letters distribution in the UFPR-ALPR dataset 53
4.5 The pipeline of the proposed ALPR system . 55
4.6 Examples of images in which only part of the vehicle is visible 57
4.7 New training samples for vehicle detection created using data augmentation

strategies . 57
4.8 Examples of LPs of different layouts and classes 58
4.9 New training samples for LP detection and layout classification created using data

augmentation . 60
4.10 A vehicle’s bounding box after adding a small margin to it and after enlarging it . 60
4.11 Two illustrations of enlargement of the LPs detected in the LP detection stage . . 61
4.12 Examples of negative images created to simulate LPs of other layouts 63
4.13 Examples of LP images generated using the data augmentation technique proposed

in [13] . 64

5.1 Some sample images of the Caltech Cars dataset [108] 66
5.2 Some examples from the EnglishLP dataset [109] 67
5.3 Sample images of the UCSD-Stills dataset [110] 68
5.4 Example images from the ChineseLP dataset [45] 69
5.5 Sample images from each subset of the AOLP dataset [35] 69
5.6 Some images from the OpenALPR-EU dataset [46] 70
5.7 Sample frames of the SSIG-SegPlate dataset [32] 71
5.8 Examples of images downloaded from the internet (www.platesmania.com)

that were used to train our system. 73
5.9 Examples of images discarded in our experiments 74
5.10 Some detection results achieved by the YOLOv2 model in different datasets . . . 76
5.11 FP and FN predictions obtained in the vehicle detection stage 77
5.12 LPs correctly detected and classified by the proposed approach 78
5.13 Some images in which our network failed either to detect the LP or to classify the

LP layout . 79
5.14 Comparison of the detections obtained by the proposed approach and commercial

systems in the same image . 81
5.15 Examples of LPs that were correctly recognized by the proposed ALPR system . 82

www.platesmania.com

5.16 Examples of LPs that were incorrectly recognized by the proposed ALPR system 83

6.1 The new standard of Mercosur LPs . 86

List of Tables

2.1 The Fast-YOLO architecture . 33
2.2 A comparison of object detectors on Pascal VOC 2007 33
2.3 The Darknet-19 classification model, used as the base of YOLOv2 35
2.4 The YOLOv2 architecture . 37
2.5 The path from YOLO to YOLOv2 . 38
2.6 The Darknet-53 backbone classifier, used for feature extraction in YOLOv3 . . . 39
2.7 Comparison of backbones on ImageNet [15] . 40
2.8 Object detection results on the COCO dataset 41
2.9 The Fast-YOLOv3 model . 42

4.1 Additional information about the UFPR-ALPR dataset 52
4.2 The YOLOv2 architecture, modified for vehicle detection 56
4.3 Fast-YOLOv2 with some changes for LP detection and layout classification. . . . 59
4.4 The CR-NET model, proposed in [11] . 61
4.5 The minimum and maximum number of characters to be considered in LPs of

each layout . 62

5.1 An overview of the datasets used in our experiments. 66
5.2 An overview of the number of images used for training, testing and validation in

each dataset employed in our experiments . 74
5.3 Vehicle detection results achieved by the YOLOv2 model in all datasets 75
5.4 Results attained by the modified Fast-YOLOv2 network in the LP detection and

layout classification stage . 77
5.5 Recognition rates obtained by the proposed system, previous works, and commer-

cial systems in all datasets used in our experiments 80
5.6 The time required for each network in our system to process an input on an

NVIDIA Titan Xp GPU. 83
5.7 Execution times considering that there is a certain number of vehicles in every

image . 83

List of Acronyms

AC Access Control
ALPR Automatic License Plate Recognition
ANPR Automatic Number Plate Recognition
AOLP Application-Oriented License Plate
AP Average Precision
API Application Programming Interface
BFLOP Billion Floating-Point Operations
BRNN Bidirectional Recurrent Neural Network
CCA Connected Component Analysis
CCPD Chinese City Parking Dataset
CNN Convolutional Neural Network
COCO Common Objects in Context
CTC Connectionist Temporal Classification
ELM Extreme Learning Machine
FLOP Floating-Point Operations
FN False Negative
FP False Positive
FPN Feature Pyramid Network
FPS Frames Per Second
GAN Generative Adversarial Network
GPU Graphics Processing Unit
HMM Hidden Markov Model
ILSVRC ImageNet Large Scale Visual Recognition Challenge
IoU Intersection over Union
ITS Intelligent Transportation Systems
LE Law Enforcement
LP License Plate
LPR License Plate Recognition
LSTM Long Short-Term Memory
mAP mean Average Precision
Mercosur Mercado Común del Sur - Southern Common Market
MLP Multilayer Perceptron
MNIST Modified National Institute of Standards and Technology
NMS Non-Maximum Suppression
OCR Optical Character Recognition
PNG Portable Network Graphics
PReLU Parametric ReLU
RCNN Region-based CNN

ReLU Rectified Linear Unit
ResNet Residual Network
ROI Region of Interest
RP Road Patrol
RPN Region Proposal Network
SMQT Successive Mean Quantization Transform
SNoW Sparse Network of Winnows
SSD Single Shot MultiBox Detector
SVM Support Vector Machine
TN True Negative
TP True Positive
VOC Visual Object Classes
WPOD-NET Warped Planar Object Detection Network
YOLO You Only Look Once

Contents

1 Introduction . 18
1.1 Problem Statement . 19
1.2 Objectives . 20
1.3 Contributions . 21
1.4 Outline . 21
2 Theoretical Foundation . 22
2.1 Evaluation Metrics . 22
2.2 Deep Learning . 23
2.2.1 Convolutional Neural Networks . 26
2.2.2 Data Augmentation . 31
2.3 YOLO . 31
2.3.1 YOLOv2 . 35
2.3.2 YOLOv3 . 38
3 Related Work. 43
3.1 License Plate Detection . 43
3.2 Character Recognition . 45
3.3 License Plate Recognition . 47
3.4 Miscellaneous . 49
3.5 Final Remarks . 50
4 Proposal . 51
4.1 UFPR-ALPR Dataset . 51
4.2 Proposed Approach . 54
4.2.1 Vehicle Detection . 55
4.2.2 License Plate Detection and Layout Classification 57
4.2.3 License Plate Recognition . 60
5 Experimental Results . 65
5.1 Datasets . 65
5.1.1 Caltech Cars . 66
5.1.2 EnglishLP . 67
5.1.3 UCSD-Stills . 67
5.1.4 ChineseLP. 68
5.1.5 AOLP . 68

5.1.6 OpenALPR-EU . 70
5.1.7 SSIG-SegPlate. 71
5.1.8 Discussion. 71
5.2 Evaluation Protocol . 72
5.3 Results. 75
5.3.1 Vehicle Detection . 75
5.3.2 License Plate Detection and Layout Classification 76
5.3.3 License Plate Recognition (Overall Evaluation) 79
6 Conclusions. 85
6.1 Future Work . 86
6.2 Publications . 87

References . 88

18

1 Introduction

Automatic License Plate Recognition (ALPR) became an important topic of research since
the appearance of the first works in the early 1990s [1–3]. A variety of ALPR systems and
commercial products have been produced over the years due to many practical applications such
as automatic toll collection, border control, traffic law enforcement, private spaces access control
and road traffic monitoring [4–6].

ALPR is also known as License Plate Recognition (LPR) and Automatic Number
Plate Recognition (ANPR) [6–8]. As shown in Figure 1.1, ALPR systems typically have four
stages: image acquisition, License Plate (LP) detection, character segmentation and character
recognition, which refer to (i) acquiring the image using a camera, (ii) locating the LP region in
the acquired image, (iii) segmenting each character within the detected LP and (iv) classifying
each segmented character.

Image Acquisition LP Detection

Temporal Redundancy

Majority Vote

ABG-1284

APC-7231

ABC-1234

NBC-1734
ABC-1234

License Plate
Recognition

Character Segmentation

Cropped
Characters

Single Frame
Character Recognition

ABC-1234

LPs Patches

Multiple Frames

ABC-1234 ABG-1284

Entire Image

Figure 1.1: A usual ALPR system with temporal redundancy at the end.

The LP detection and character segmentation stages require higher accuracy since a
failure would probably lead to another failure in the subsequent stages. Many authors have
proposed approaches with a vehicle detection stage prior to LP detection, aiming to eliminate
False Positives (FPs) and reduce processing time [9–11]. Regarding character segmentation, it
has become common the use of segmentation-free approaches for LP recognition [8, 12, 13], as
the character segmentation by itself is a challenging task that is prone to be influenced by uneven
lighting, shadows, and noise [14].

Many computer vision tasks have recently achieved a great increase in performance
mainly due to the availability of large-scale annotated datasets (i.e., ImageNet [15]) and hardware
capable of handling a large amount of data, i.e., Graphics Processing Units (GPUs). In this
scenario, deep learning techniques arise, with manymachine learning competitions and challenges
being won through them, even achieving superhuman visual results in some domains [16]. Despite
the remarkable progress of deep learning approaches in ALPR [14,17, 18], there are still many
open challenges in this context.

19

1.1 Problem Statement
Although ALPR has been frequently addressed in the literature, many solutions are still not
robust enough to be executed on real-world scenarios. Such solutions commonly depend on
certain constraints such as specific cameras or viewing angles, simple backgrounds, good lighting
conditions, search in a fixed region, and certain types of vehicles (e.g., they would not detect LPs
from vehicles such as motorcycles, trucks or buses). Additionally, several approaches rely on
handcrafted features that capture certain morphological and color attributes of the LPs [19–22].
These features are easily affected by noise and might not be robust for LPs of different layouts.

ALPR systems must be capable of recognizing multiple LP layouts since there might be
various LP layouts in the same country or region, as illustrated in Figure 1.2. In some countries, it
is possible to customize the LPs. In the United States, for example, many states sell specialty LPs
displaying the emblems of colleges, universities, clubs, professional sports team, and fraternal
organizations. It is also possible to customize the arrangement of letters and digits for an extra
fee (i.e., vanity LPs) [23].

Figure 1.2: Examples of different LP layouts in the United States. Image reproduced from http://www.
ashtonrose.org/blog/new-north-dakota-license-plate.

Even though many authors claim that their approaches could be extended with small
modifications to detect/segment/recognize LPs of different layouts [24–27], this may not be
an easy task. For example, a character segmentation approach designed for LPs with simple
backgrounds is likely to fail on LPs with complex backgrounds and logos that touch and overlap
some characters [8, 28].

In addition, ALPR systems should operate fast enough to fulfill the needs of Intelligent
Transportation Systems (ITS). In technical terminology, a “real-time” operation for ALPR stands
for a fast-enough operation to not miss a single object of interest that moves through the scene [4].
In the literature [13, 29, 30], generally a system is considered “real-time” if it is capable of
processing at least 30 Frames Per Second (FPS) since commercial cameras usually record videos
at that frame rate. Despite the importance of having a fast system in ALPR applications, many
authors still propose computationally expensive approaches that are not able to process frames in
real time, even when the experiments are performed on a high-end GPU [14,17, 26].

Although major advances have been achieved in computer vision using deep learning
methods [31], there is still a great demand for ALPR datasets with vehicle and LP annotations.
The SSIG-SegPlate [32] is the best known public dataset of Brazilian LPs for ALPR, and it
has been often used in the literature [11, 13, 33], as the bounding box of all LP characters
were manually labeled by the authors, enabling the application of object detection and data
augmentation techniques that require the position of each character. However, the SSIG-SegPlate
dataset contains less than 800 training examples and has several constraints such as the use of a
static camera mounted always in the same position, all images have very similar and relatively

http://www.ashtonrose.org/blog/new-north-dakota-license-plate
http://www.ashtonrose.org/blog/new-north-dakota-license-plate

20

simple backgrounds, there are no motorcycles and only a few cases where the LPs are not
well aligned. It should be noted that deep learning approaches are particularly dependent on
the availability of large quantities of training data in order to generalize well and yield high
classification accuracy on unseen data [34]. Higher amounts of data allow the use of more robust
network architectures with more parameters and layers.

In ALPR applications, the images are acquired by cameras located alongside roads,
in the entrance/exit of private spaces, on a vehicle’s windshield, among others. The camera’s
position and its specifications (resolution, autofocus, focal length, etc.) should be considered
since an ALPR approach might be robust only for a specific setup/application [35], for example,
a system designed for images captured by a static camera at the entrance/exit of a parking lot will
probably perform poorly on images acquired by dashboard cameras. This was illustrated in the
most recent work of our colleagues [13]. Even though their approach, which is based on deep
multi-task networks, achieved state-of-the-art results in the SSIG-SegPlate dataset, it did not
perform well in our dataset (introduced in Section 4.1), in which the images were acquired by
non-static cameras, correctly recognizing less than 60% of the frames in the test set. As pointed
out in [13], the nature of non-static backgrounds might be very problematic to some LP detection
approaches that work directly on the frames (i.e., without vehicle detection) since there are many
different patterns on the scenes that might be confused with an LP.

You Only Look Once (YOLO) [29, 36, 37] is a real-time object detection system that
achieved outstanding and state-of-the-art results in the Pascal Visual Object Classes (VOC) [38]
and Common Objects in Context (COCO) [39] detection tasks. Although YOLO has already
been employed in the ALPR context in previous works, a detailed assessment of its concepts
or models for this task has not yet been presented, to the best of our knowledge. In [40, 41],
for example, promising LP detection results were achieved through models based on YOLO,
however, these works did not address LP recognition. In [11], on the other hand, all stages were
handled using YOLO-based models. Although the ALPR system proposed in their work is quite
fast (i.e., 76 FPS on a high-end GPU), a poor recognition rate of 63.18% was obtained in the
SSIG-SegPlate dataset, which is not satisfactory for real-world applications.

1.2 Objectives
As great advances in object detection were achieved through YOLO-inspired models [42–44], we
decided to specialize it for ALPR. The main objective of this work is to design an efficient and
layout-independent ALPR system using the YOLO object detector at all stages.

In order to accomplish the main objective, some secondary or specific objectives are
required, as follows:

• To eliminate several constraints commonly found in ALPR systems. All stages of the
proposed approach are trained and tested using images from several datasets, which were
collected under different conditions (e.g., with variations in lighting, camera position
and settings, and vehicle types) and reproduce distinct real-world applications;

• To propose a layout classification stage prior to LP recognition, so that we can employ
layout-specific approaches for this task in cases where the LP and its layout are predicted
with a high confidence value. In other cases, a generic approach is applied;

• To evaluate different YOLO models (e.g., Fast-YOLOv2, YOLOv2 and YOLOv3) with
various modifications (e.g., changes in the input size, number of filters, layers, and

21

anchors, among others) and carefully combine them in the best way in order to achieve
the best speed/accuracy trade-off at each stage;

• To propose a larger dataset for ALPR focused on usual and different real-world scenarios,
which eliminates many of the constraints found in ALPR applications by using different
non-static cameras to capture images from different types of vehicles (cars, motorcycles,
buses and trucks) with complex backgrounds and under different lighting conditions;

• To design and apply data augmentation techniques to simulate LPs of other layouts and
to generate LP images with characters that have few instances in the training set, as
many examples are needed to effectively train Convolutional Neural Networks (CNNs).

1.3 Contributions
The main contributions of this work can be summarized as follows:

• A new efficient and layout-independent ALPR system using the state-of-the-art YOLO
object detection CNNs1, which outperforms previous works and two commercial systems
in the ChineseLP [45], OpenALPR-EU [46], SSIG-SegPlate [32] and UFPR-ALPR
datasets, and achieves competitive results to the baselines in other four public datasets;

• A public dataset for ALPR that includes 4,500 fully annotated images (with over 30,000
LP characters) from 150 vehicles in real-world scenarios where both the vehicle and
the camera (inside another vehicle) are moving. Compared to the SSIG-SegPlate
dataset [32], the proposed one has more than twice the images and contains a larger
variety in different aspects;

• Annotations regarding the position of the vehicles, LPs and characters, as well as their
classes, in the public datasets used in this work since they have no annotations or contain
labels only for part of the ALPR pipeline. The annotations, which were made manually,
are publicly available to the research community;

• A comparative evaluation of the proposed approach, previous works in the literature
and two commercial systems in eight publicly available datasets.

All publications generated by this research are listed in Section 6.2.

1.4 Outline
The remainder of this work is organized as follows. Chapter 2 presents the theoretical foundation
of deep learning, CNNs and YOLO. We briefly review related works in Chapter 3. The UFPR-
ALPR dataset and the proposed ALPR system are introduced in Chapter 4. We report and discuss
the results of our experiments in Chapter 5. Conclusions and future works are given in Chapter 6.

1The entire ALPR system, i.e., the architectures and weights, is publicly available for academic purposes at
https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/.

https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/

22

2 Theoretical Foundation

In this chapter, we present a theoretical basis of the concepts employed in this work. We first
introduce the evaluation metrics commonly used for object detection since our ALPR system is
based on the YOLO object detector. Then, we provide information on deep learning, CNNs and
data augmentation. Finally, we describe YOLO, its second and third versions (i.e., YOLOv2 and
YOLOv3) in detail.

2.1 Evaluation Metrics
The precision and recall evaluation metrics are commonly used in object detection [38,39, 47]
and also in the ALPR context [11, 14, 41]. These metrics are defined based on the area of the
ground truth and the predicted bounding boxes in terms of FPs, False Negatives (FNs), True
Positives (TPs) and True Negatives (TNs), and can be formally expressed as

precision =
TP

TP + FP
, (2.1)

recall =
TP

TP + FN
, (2.2)

where TPs are examples correctly labeled as positives, FPs refer to negative examples incorrectly
labeled as positive, TNs correspond to examples correctly labeled as negatives and, finally, FNs
refer to positive examples incorrectly labeled as negatives [48].

Precision varies in the [0,1] range and the higher its value, the smaller is the set of FPs
which were computed. Recall also varies in the [0,1] range and the higher its value, the smaller is
the set of TPs which were not found [49]. As pointed out in [50], neither precision nor recall
alone can accurately assess the match quality. In particular, recall can be easily maximized by
returning as many predictions as possible (resulting in a poor precision), e.g. predicting many
vehicles/LPs in the same frame/region. On the other side, a high precision can be achieved at the
expense of a poor recall by returning only a few (correct) correspondences, e.g. using a very
high confidence threshold to consider a vehicle/LP detection.

The F-measure metric is defined as a harmonic mean of precision and recall. As
shown in Equation 2.3, the most general form allows the differential weighting of precision
and recall, however, commonly they are given equal weight (i.e., β = 1) [51]. The Average
Precision (AP) [38] metric summarizes the shape of the precision/recall curve, and is defined
as the average precision at a set of eleven equally spaced recall levels [0, 0.1, . . . , 1] (see

23

Equation 2.4). Finally, the mean Average Precision (mAP) is calculated by taking the mean AP
over all classes.

F-measure = (1 + β2) ·
precision · recall

(β2 · precision) + recall
, (2.3)

AP =
1
11

∑
r∈{0,0.1,...,1}

max
r̃:r̃>r

Precision(r̃) . (2.4)

A metric often used to assess the quality of predictions in object detection tasks is the
Intersection over Union (IoU), also known as Jaccard index and Jaccard similarity coefficient,
which can be expressed by the formula

IoU =
area(Bp ∩ Bgt)

area(Bp ∪ Bgt)
, (2.5)

where Bp and Bgt are the predicted and ground truth bounding boxes, respectively. Figure 2.1
illustrates this definition. The closer the IoU is to 1, the better the detection.

Figure 2.1: IoU is the division of the overlapping area between the bounding boxes by the union area. Image
reproduced from https://www.pyimagesearch.com/.

The IoU is interesting because penalizes both over- and under-estimated objects, as
shown in Figure 2.2. Overestimated bounding boxes might include a large amount of unnecessary
information and also increase the processing time of subsequent stages. On the other hand,
meaningful parts of the object might be lost in underestimated bounding boxes.

The PASCAL VOC [38] and COCO [39] object detection tasks consider a detection to
be correct if the IoU between predicted and ground truth bounding boxes exceed 0.5. As stated
in [38], this threshold was set deliberately low to account for inaccuracies in bounding boxes in
the training data, for example, defining the bounding box for a highly non-convex object (e.g., a
person with arms and legs spread) is somewhat subjective.

2.2 Deep Learning
Problems that are intellectually difficult for human beings but relatively straightforward for
computers (e.g., problems that can be described by a list of formal/mathematical rules) were

https://www.pyimagesearch.com/

24

(a) Overestimated vehicle (IoU = 0.8) (b) Underestimated vehicle (IoU = 0.8)

Figure 2.2: An illustration of two bounding boxes with the same IoU with the ground truth. The predicted position
and ground truth are outlined in red and green, respectively. Image (without the bounding boxes) reproduced from
https://www.pexels.com.

rapidly tackled in the early days of artificial intelligence. On the other hand, problems that
humans solve intuitively, that feel automatic, such as telling the difference between pictures of
cats and dogs are very challenging for artificial intelligence [52, 53].

The ability to process natural data in their raw form (such as the pixel values of an image)
was limited in conventional machine learning techniques. For many years, the development of
machine learning systems required a lot of effort and considerable domain expertise to transform
raw data into feature vectors with both discriminative and informative features [31]. It should be
noted that the choice of data representation (or features) directly determines the performance of
machine learning methods [54], as demonstrated in Figure 2.3.

Figure 2.3: An example of different data representations. It is impossible to draw a straight line that separates two
categories of data when representing them using Cartesian coordinates. On the other hand, this task becomes very
simple when using Polar coordinates. Image reproduced from http://www.deeplearningbook.org/.

One solution to this problem is representation learning, which is a set of methods where
the representations needed for detection or classification are automatically discovered from raw
data [31]. In other words, instead of telling the system what a cat or dog looks like (through
feature vectors), we provide as input a lot of images (i.e., millions or hundreds of thousands) of
cats and dogs and let the system learns by itself to associate patterns and images with the correct
label [53]. A string of empirical successes has been achieved both in academia and in industry
with the growing interest of the scientific community on representation learning [54].

https://www.pexels.com
http://www.deeplearningbook.org/

25

The central problem in representation learning is that it can be very difficult to extract
such high-level, abstract features from raw data. Deep learning solves this problem by introducing
representations that are expressed in terms of other, simpler representations [52]. An illustration
of a deep learning model is shown in Figure 2.4. As can be seen, features regarding the presence
or absence of edges at particular orientations and locations in the image are learned in the
first representation layer. Next, corners and contours (i.e., collections of edges) are detected
in the second layer. The third layer is where parts of objects are found, by locating specific
collections of contours and corners. Finally, the subsequent layers would detect specific objects
as combinations of these parts [31, 52]. As noted by LeCun et al. [31], the key aspect of deep
learning is that these layers of features are learned from data using a general-purpose learning
procedure, and thus it requires very little engineering by hand.

Figure 2.4: An illustration of a deep learning model. First, low-level features such as edges and curves are
found, and then more abstracts concepts are built through a series of layers. Image reproduced from http:
//www.deeplearningbook.org/.

At first, deep learning approaches were mainly employed for the handwritten digits
recognition problem, breaking the supremacy of Support Vector Machines (SVMs) in the MNIST
dataset1. The focus shifted progressively to object recognition in natural images, increasingly
attracting the attention of the scientific community since the breakthrough achieved by Krizhevsky
et al. [55] on the ImageNet Large Scale Visual Recognition Challenge (ILSVRC)2, bringing
down the state-of-the-art error rate from 26.2% to 15.3% [54].

In addition to the outstanding results achieved in several applications through deep
learning, there are two other reasons for its success [31,56]. First, the dramatically increased chip
processing abilities (e.g., GPUs). Second, the fact that deep learning can easily take advantage of
increases in the amount of available computation and data since it requires very little engineering
by hand.

1The MNIST dataset is described at http://yann.lecun.com/exdb/mnist/.
2The ILSVRC challenge is described at http://www.image-net.org/challenges/LSVRC/.

http://www.deeplearningbook.org/
http://www.deeplearningbook.org/
http://yann.lecun.com/exdb/mnist/
http://www.image-net.org/challenges/LSVRC/

26

2.2.1 Convolutional Neural Networks
Convolutional Neural Networks (CNNs), also known as Convolutional Networks and ConvNets,
are one of the most popular deep neural network architectures. These networks are designed to
process data that have a known, grid-like topology, for example a color image composed of three
2-D arrays containing pixel intensities in the three color channels [31, 52]. It is worth noting that
the impressive results reported by Krizhevsky et al. [55] were obtained using CNNs.

All CNNs perform a kind of linear operation called convolution (hence the name)
in at least one of their layers [52]. The basic building blocks of CNNs are convolutions,
pooling (downsampling) operators, activation functions [e.g., Rectified Linear Unit (ReLU)]
and fully connected layers, which are essentially similar to hidden layers of a Multilayer
Perceptron (MLP) [57]. Figure 2.5 shows an example of a CNN. Each one of those building
blocks will be described throughout this section.

Figure 2.5: An example of a CNN, which consists of convolutional layers, activation functions and pooling layers,
followed by a set of fully connected layers. Image reproduced from [58].

Convolutional Layer

The main building blocks of CNNs are the convolutional layers, which are composed of a set of
filters (or kernels), each to be applied to the entire array of pixel values. Each filter is a matrix of
weights (or values) which can be considered as a feature identifier (e.g., straight edges, simple
colors, and curves). The filters produce what can be seen as an affine transformation of the input
image. Each filter is slid (or convolved) around the input image with the values in the filter being
multiplied by the original pixel values of the image [57]. An example of 2-D convolution is
shown in Figure 2.6.

Each region that the filter processes is called local receptive field and an output value
(pixel) is a combination of the input pixels in this local receptive field, as shown in Figure 2.7.
That makes the convolutional layer different from layers of an MLP for example, where each
neuron produces a single output based on all values from the previous layer (see Figure 2.8) [57].

An important aspect of CNNs is that the filter weights are shared across receptive fields,
significantly reducing the number of weights that the network has to learn. As stated by LeCun
et al. [31], if a feature can appear in one part of the image, it could appear anywhere, hence the
idea of filters at different locations sharing the same weights and detecting the same pattern in
different parts of the array.

Note that convolution is not naturally equivariant to some other transformations, such
as changes in the scale or rotation of an image. Therefore, other mechanisms are necessary for
handling these kinds of transformations [52].

27

Figure 2.6: An example of 2-D convolution. The boxes with arrows were drew to indicate how the upper-left element
of the output tensor is formed by applying the kernel to the corresponding upper-left region of the input tensor.
Image reproduced from [52].

Figure 2.7: The convolution process. A convolution processes local information centred in each position (x, y): this
region is called local receptive field, whose values are used as input by some filter i with weights wi in order to
produce a single point (pixel) in the output feature map f (i, x, y). Image reproduced from [57].

Activation Function

In order to go from one layer to the next, a set of units compute a weighted sum of their inputs
from the previous layer and pass the result through an activation function [31]. In contrast to the
use of a sigmoid function such as the logistic or hyperbolic tangent in MLPs, the Rectified Linear
Unit (ReLU) is often used in CNNs after convolutional or fully connected layers [57]. Figure 2.9
shows plots of these functions.

Although sigmoid functions are commonly used in neural networks, their limitations
are well known. For example, it is slow to learn the whole network due to weak gradients when
the units are close to saturation in both directions [56]. Deep CNNs with ReLUs train several
times faster than their equivalents with sigmoid functions [55]. The Leaky ReLU allows for a

28

(a) Fully connected layer (b) Convolutional layer

Figure 2.8: Comparison between fully connected and convolutional layers. In a fully connected
layer, each unit is connected to all units of the previous layers. In a convolutional layer, on the
other hand, each unit is connected to a constant number of units in a local region of the previous
layer. Image reproduced from https://www.quora.com/what-is-the-difference-between-a-
convolutional-neural-network-and-a-multilayer-perceptron.

(a) Hyperbolic tangent (b) Logistic (c) ReLU (d) Parametric ReLU (PReLU)

Figure 2.9: Activation functions. (a) and (b) are often used in MLP networks, while (c) and (d) are more common in
CNNs. Note that a PReLU (d) with a = 0.01 is equivalent to Leaky ReLU. Image reproduced from [57].

small, non-zero gradient when the unit is saturated and not active. Maas et al. [59] observed that
the non-zero gradient does not substantially affect training optimization and that deep networks
with Leaky ReLUs converge slightly faster.

In addition to the innovations in better architectures of deep learning models, there is
also a growing body of work on developing and implementing better nonlinear units [56].

Pooling

In addition to convolutions and activation functions, pooling operationsmake up another important
building block in CNNs. Pooling operations reduce the size of feature maps by using some
function to summarize subregions, such as taking the average or the maximum value of the
contributing features [60]. Although much better linear discrimination performance was achieved
with max pooling compared to average pooling in [61], the same research group showed in [62]
that depending on the data and features, either max or average pooling may perform best. Then,
in this section, we focus on the max-pooling operator since it is the most frequently used [57].

The role of the pooling layer is to merge semantically similar features into one, allowing
representations to vary very little when elements in the previous layer vary in position and
appearance [31]. In other words, the use of pooling can be viewed as adding an infinitely strong
prior that the function the layer learns must be invariant to small translations [52]. See Figure 2.10
for an example of how max pooling (with stride = 1) works.

https://www.quora.com/what-is-the-difference-between-a-convolutional-neural-network-and-a-multilayer-perceptron
https://www.quora.com/what-is-the-difference-between-a-convolutional-neural-network-and-a-multilayer-perceptron

29

(a)

(b)

Figure 2.10: Max pooling introduces invariance. (a) shows a view of the middle of the output of a convolutional
layer, and (b) shows a view of the same network, after the input has been shifted to the right by one pixel. The
bottom row shows the outputs of the activation function. The top row shows the outputs of max pooling, with a
stride of one pixel between pooling regions and a pooling region width of three pixels. Observe that every value
in the bottom row has changed, but only half of the values in the top row have changed, because the max-pooling
units are only sensitive to the maximum value in the neighborhood, not its exact location. Image reproduced from
http://www.deeplearningbook.org/.

It is possible to use fewer pooling units than detector units (see Figure 2.11) since
pooling summarizes the responses over a whole neighborhood. In this way, the computational
efficiency of the network is improved because the next layer has fewer inputs to process. When
the number of parameters in the next layer is a function of its input size (e.g., the next layer is fully
connected and based on matrix multiplication) this reduction in the input size can also result in
improved statistical efficiency and reduced memory requirements for storing the parameters [52].

Figure 2.11: Max pooling with downsampling. When using stride = 2 between pools, the representation size is
reduced by a factor of two, which reduces the computational and statistical burden on the next layer. Note that the
rightmost pooling region has a smaller size, but must be included if we do not want to ignore some of the detector
units. Image reproduced from http://www.deeplearningbook.org/.

It should be noted that generative models such as auto-encoders and Generative
Adversarial Networks (GANs) shown to be harder to train with pooling layers [57]. Therefore,
pooling layers might be avoided in some neural network architectures.

http://www.deeplearningbook.org/
http://www.deeplearningbook.org/

30

Fully Connected Layers and Regularization

Conventional CNNs perform convolution in the lower layers of the network. For classification,
the feature maps of the last convolutional layer are vectorized and fed into fully connected layers
followed by a softmax logistic regression layer [63].

However, the fully connected layers are prone to overfitting, thus hampering the
generalization ability of the overall network [63]. In this sense, a technique called dropout [64]
was introduced to limit co-adaptation. It operates as follows. On each training instance, each
hidden unit is randomly omitted with a fixed probability (e.g., p = 0.5) [56]. The neurons that are
“dropped out” do not contribute to the forward pass and do not participate in backpropagation, as
illustrated in Figure 2.12. Thus, the neural network samples a different architecture every time an
input is presented, but all these architectures share weights [55].

(a) Standard neural network (b) After applying dropout

Figure 2.12: An illustration of dropout regularization. (a) shows a standard neural network with 2 hidden layers, and
(b) shows an example of a thinned network produced by applying dropout to the network on (a). Image reproduced
from [64].

Dropout is turned off in the test stage and the activations are rescaled by p to compensate
those activations that were dropped during the training stage [57]. The benefits of dropout
regularization for training deep neural networks are to make a hidden unit act strongly by itself
without relying on others and to serve a way to do model averaging of different networks. These
benefits are most pronounced when the training data is limited, or when the network size is
disproportionally large with respect to the size of the training data [56].

Deep neural networks involve the composition of several functions or layers. Training
these networks is complicated by the fact that the distribution of each layer’s inputs changes
during training, as the parameters of the previous layers change [65]. In other words, the gradient
tells how to update each parameter, under the assumption that the other layers do not change.
In practice, all layers are updated simultaneously. Hence, unexpected results might happen
because many functions composed together were changed simultaneously, using updates that
were computed under the assumption that the other functions would remain constant [52].

This makes it notoriously hard to train models with saturating nonlinearities. Therefore,
the training is slower since it requires lower learning rates and careful parameter initialization [65].
In this direction, Ioffe and Szegedy [65] proposed a regularization technique called batch
normalization for controlling the distributions of neural network activations, thereby reducing
internal covariate shift [66]. Batch normalization is a method of adaptive reparametrization in

31

which the output of each neuron (before application of the nonlinearity) is normalized by the
mean and standard deviation of the outputs calculated over the examples in the mini-batch [67].
This effectively decouples each layer’s parameters from those of other layers, leading to a
better-conditioned optimization problem. Deep neural networks trained with batch normalization
converge significantly faster, generalize better and often do not need dropout [52, 57, 66].

2.2.2 Data Augmentation
A huge number of training examples are required to train CNNs since they often have a large set
of parameters to be optimized [57]. In practice, the amount of data available is limited. One way
to get around this problem is to create fake data and add it to the training set. This process is
known as data augmentation. It is reasonably straightforward to create new fake data for some
machine learning tasks [52].

Images in the same dataset usually have similar illumination conditions, a low variance
of rotation, pose, etc. Therefore, one can augment the training dataset using many operations to
produce several times more examples [57]. Operations like translating the training images a few
pixels in each direction can often greatly improve generalization, even if the model has already
been designed to be partially translation invariant by using the convolution and pooling techniques
described in the previous section. Many other operations such as rotating or scaling the image
have also proven quite effective [52, 57, 68]. In Figure 2.13, we show some LP images generated
using the data augmentation technique proposed in [13], which consists of the permutation of the
characters on the LPs in addition to random variations of scale, rotation, brightness and cropping.

Figure 2.13: An illustration of data augmentation. The image in the upper-left corner is the original and the others
were generated automatically.

It is well-known that unbalanced data (usually the case in ALPR) is undesirable for
neural network classifiers since the learning of some patterns might be biased. This problem can
be addressed with data augmentation, by increasing the number of images of under-represented
classes to create a new set of training images, in which each class is equally represented.

It is worth noting that some frameworks (e.g., Darknet [69]) already have built-in data
augmentation [29], and one must be careful not to apply transformations that would change the
correct class. For example, Optical Character Recognition (OCR) tasks require recognizing the
difference between ‘b’ and ‘d’ and the difference between ‘6’ and ‘9’, so these cases must be
considered before applying horizontal flips and 180° rotations for those tasks [52].

2.3 YOLO
A core problem in computer vision is object detection. The detection task is substantially more
complex than the classification one [56]. Detection pipelines generally start by extracting features
from input images in a sliding window fashion or on some subset of regions in the image. Then,
classifiers are used to identify objects in the feature space [29].

32

Unlike sliding window and region proposal-based techniques, YOLO [29] is a system
which reframes object detection as a single regression problem, straight from image pixels to
bounding box coordinates and class probabilities. Thus, YOLO reasons globally about the image
when making predictions. This is achieved by unifying the separate components (e.g., generating
potential bounding boxes, running a classifier on these boxes, and post-processing to refine the
bounding boxes) of object detection into a single neural network [29].

As can be seen in Figure 2.14, YOLO divides the input image into an S × S grid.
Each cell predicts B bounding boxes (x,y,w,h) and confidence scores for those boxes. These
scores reflect how likely the bounding box contains an object (i..e, the objectness [70]) and how
accurate is the bounding box. Additionally, each grid cell predicts one set C of class probabilities,
regardless of the number of bounding boxes B. Class-specific confidence scores are generated by
multiplying the individual bounding box’s objectness score by the class probabilities [29].

S × S grid on input

Bounding boxes + confidence

Class probability map

Final detections

Figure 2.14: An overview of YOLO. It divides the image into an S × S grid and for each grid cell predicts B
bounding boxes (x,y,w,h), confidence for those boxes, and C class probabilities. These predictions are encoded as
an S × S × (B × 5 + C) tensor. Image reproduced from [29].

Since there are many bounding boxes predicted with very low confidence values for
any class, a simple threshold is applied to reduce FPs. Furthermore, it is not always clear
on which grid cell an object falls into and the objects can be well located by multiple cells
(especially large objects or objects near the border of multiple cells). Therefore, a Non-Maximum
Suppression (NMS) algorithm is employed to eliminate redundant detections [29].

YOLO has 24 convolutional layers followed by 2 fully connected layers (see Figure 2.15).
The first 20 convolutional layers followed by both an average pooling layer and a fully connected
layer were used for pre-training the classification task on the ImageNet 1000-class competition
dataset. Then, four convolutional layers and two fully connected layers were added for detection.
A linear activation function is used for the final layer and all other layers use Leaky ReLUs. In
addition, the input resolution of the network was increased from 224 × 224 to 448 × 448 as
detection usually requires fine-grained information. Lastly, there is a dropout layer with rate = 0.5
after the first connected layer to prevent co-adaptation between layers [29].

33

448

448

3

7

7

Conv. Layer
7x7x64-s-2

Maxpool Layer
2x2-s-2

3
3

112

112

192

3
3

56

56

256

Conn. Layer

4096

Conn. LayerConv. Layer
3x3x192

Maxpool Layer
2x2-s-2

Conv. Layers
1x1x128
3x3x256
1x1x256
3x3x512

Maxpool Layer
2x2-s-2

3
3

28

28

512

Conv. Layers
1x1x256
3x3x512
1x1x512

3x3x1024
Maxpool Layer

2x2-s-2

3
3

14

14

1024

Conv. Layers
1x1x512

3x3x1024
3x3x1024

3x3x1024-s-2

3

3

7

7
1024

7

7
1024

7

7
30

} ×4 } ×2
Conv. Layers
3x3x1024
3x3x1024

Figure 2.15: The YOLO architecture. It has 24 convolutional layers followed by 2 fully connected layers. Alternating
1 × 1 convolutional layers reduce the feature space from preceding layers. The convolutional layers are pre-trained at
half the resolution (224 × 224) and then at double the resolution for detection. Image reproduced from [29].

A fast version of YOLO, called Fast-YOLO (or Tiny-YOLO), was also designed in [29].
All training and testing parameters are the same, however, Fast-YOLO uses fewer convolutional
layers (9 instead of 24) and fewer filters in those layers, as detailed in Table 2.1.

Table 2.1: The Fast-YOLO architecture.

Layer Filters Size Input Output
0 conv 16 3 × 3/1 448 × 448 × 3 448 × 448 × 16
1 max 2 × 2/2 448 × 448 × 16 224 × 224 × 16
2 conv 32 3 × 3/1 224 × 224 × 16 224 × 224 × 32
3 max 2 × 2/2 224 × 224 × 32 112 × 112 × 32
4 conv 64 3 × 3/1 112 × 112 × 32 112 × 112 × 64
5 max 2 × 2/2 112 × 112 × 64 56 × 56 × 64
6 conv 128 3 × 3/1 56 × 56 × 64 56 × 56 × 128
7 max 2 × 2/2 56 × 56 × 128 28 × 28 × 128

Layer Filters Size Input Output
8 conv 256 3 × 3/1 28 × 28 × 128 28 × 28 × 256
9 max 2 × 2/2 28 × 28 × 256 14 × 14 × 256
10 conv 512 3 × 3/1 14 × 14 × 256 14 × 14 × 512
11 max 2 × 2/2 14 × 14 × 512 7 × 7 × 512
12 conv 1024 3 × 3/1 7 × 7 × 512 7 × 7 × 1024
13 conv 256 3 × 3/1 7 × 7 × 1024 7 × 7 × 256
14 connected 12544 1470
15 detection

Despite being much smaller, Fast-YOLO is still able to detect some objects quite
precisely. In Figure 2.16, we show the predictions obtained in the same image with Fast-YOLO
and YOLO when using default parameters.

Impressive results were attained in the Pascal VOC detection dataset with both YOLO
and Fast-YOLO models, as shown in Table 2.2. YOLO processes images in real time at 45 FPS,
whereas Fast-YOLO processes 155 FPS while still achieving double the mAP value of other
real-time detectors. Note that better mAP values were obtained with other approaches (e.g., Fast
R-CNN and Faster R-CNN), but these approaches are still far from real time. These results were
reported in [29].

Real-Time Detectors Train mAP FPS

100Hz DPM 2007 16.0 100
30Hz DPM 2007 26.1 30
Fast-YOLO 2007 + 2012 52.7 155
YOLO 2007 + 2012 63.4 45

Less Than Real-Time Train mAP FPS

Fastest DPM 2007 30.4 15
R-CNN Minus R 2007 53.5 6
Fast R-CNN 2007 + 2012 70.0 0.5
Faster R-CNN VGG-16 2007 + 2012 73.2 7
Faster R-CNN ZF 2007 + 2012 62.1 18

Table 2.2: A comparison of object detectors on Pascal VOC 2007. Fast-YOLO is the fastest detector and is still
twice as accurate as any other real-time detector. YOLO is 10.7% mAP more accurate than Fast-YOLO while still
well above real time in speed. Results reproduced from [29].

34

(a) Fast-YOLO (b) YOLO

Figure 2.16: Objects predicted by both (a) Fast-YOLO and (b) YOLO in the same image. The main difference is that
the Fast-YOLO model was not able to detect the bicycle. Image (without the bounding boxes) reproduced from
https://pjreddie.com/darknet/yolo.

Despite the promising results achieved, YOLO has some limitations. First, each grid cell
only predicts two boxes (by default) and can only have one class. This limits how close detected
objects can be, as shown in Figure 2.17. Second, YOLO struggles to generalize to objects in new
or unusual aspect ratios or configurations, as it learns to predict bounding boxes from data. This
is not a major problem for ALPR since vehicles, LPs and its characters are standardized and have
very similar configurations. Lastly, errors in small and large bounding boxes are treated equally
in the loss function. However, a small error in a large box is generally benign but a small error in
a small box has a much greater effect on IoU [29,71].

(a) Original image (b) Objects predicted by YOLO

Figure 2.17: A limitation of YOLO. It might miss objects that are too close. In (a), there are 9 individuals in the
lower-left corner, but only 5 were detected by YOLO, as can be seen in (b). Image reproduced from [71].

https://pjreddie.com/darknet/yolo

35

2.3.1 YOLOv2
As pointed out in [36], YOLO has higher localization errors and the recall is lower when compared
to some detection systems proposed later. YOLOv2 [36] is the second version of YOLO with the
objective of significantly improving its accuracy while making it faster. Here we describe the
concepts introduced in YOLOv2 and their impact on the mAP obtained on Pascal VOC 2007.

A new classification model, called Darknet-19, is used as the base of YOLOv2. As can
be seen in Table 2.3, the model has 19 convolutional layers (hence the name) and 5 max-pooling
layers. In short, the model consists of mostly 3 × 3 filters, and the number of channels is doubled
after every pooling step. As in [63], global average pooling is used to make predictions, and 1× 1
filters are employed to compress the feature representation between 3 × 3 convolutions [36].

Table 2.3: The Darknet-19 classification model, used as the base of YOLOv2. Table adapted from [36].

Layer Filters Size Input Output
0 conv 32 3 × 3/1 448 × 448 × 3 448 × 448 × 32
1 max 2 × 2/2 448 × 448 × 32 224 × 224 × 32
2 conv 64 3 × 3/1 224 × 224 × 32 224 × 224 × 64
3 max 2 × 2/2 224 × 224 × 64 112 × 112 × 64
4 conv 128 3 × 3/1 112 × 112 × 64 112 × 112 × 128
5 conv 64 1 × 1/1 112 × 112 × 128 112 × 112 × 64
6 conv 128 3 × 3/1 112 × 112 × 64 112 × 112 × 128
7 max 2 × 2/2 112 × 112 × 128 56 × 56 × 128
8 conv 256 3 × 3/1 56 × 56 × 128 56 × 56 × 256
9 conv 128 1 × 1/1 56 × 56 × 256 56 × 56 × 128
10 conv 256 3 × 3/1 56 × 56 × 128 56 × 56 × 256
11 max 2 × 2/2 56 × 56 × 256 28 × 28 × 256
12 conv 512 3 × 3/1 28 × 28 × 256 28 × 28 × 512

Layer Filters Size Input Output
13 conv 256 1 × 1/1 28 × 28 × 512 28 × 28 × 256
14 conv 512 3 × 3/1 28 × 28 × 256 28 × 28 × 512
15 conv 256 1 × 1/1 28 × 28 × 512 28 × 28 × 256
16 conv 512 3 × 3/1 28 × 28 × 256 28 × 28 × 512
17 max 2 × 2/2 28 × 28 × 512 14 × 14 × 512
18 conv 1024 3 × 3/1 14 × 14 × 512 14 × 14 × 1024
19 conv 512 1 × 1/1 14 × 14 × 1024 14 × 14 × 512
20 conv 1024 3 × 3/1 14 × 14 × 512 14 × 14 × 1024
21 conv 512 1 × 1/1 14 × 14 × 1024 14 × 14 × 512
22 conv 1024 3 × 3/1 14 × 14 × 512 14 × 14 × 1024
23 conv 1000 1 × 1/1 14 × 14 × 1024 14 × 14 × 1000
24 avg 14 × 14 × 1000 1000
25 softmax

An improvement of more than 2% in mAP was attained by adding batch normalization
on all convolutional layers. In this way, dropout was removed without overfitting. Furthermore,
an increase of almost 4% mAP was achieved through high-resolution classification, that is, after
training the classification network on images of 224 × 224 pixels (as in YOLO) the network was
tuned at the full 448 × 448 resolution for 10 epochs on ImageNet [36].

The fully connected layers from YOLO were removed and YOLOv2 uses anchor boxes
(or priors) to predict bounding boxes. Thus, a class and objectness are predicted for each anchor
box [36]. For a better understanding, consider that 5 anchor boxes with particular aspect ratios
are created, as shown in Figure 2.18. Instead of predicting 5 arbitrary bounding boxes, YOLOv2
predicts offsets to each of these anchor boxes. Thus, the network does not predict the final size of
the object but only adjusts the size of the nearest anchor to the size of the object [36, 71].

Figure 2.18: Examples of anchors boxes. Image reproduced from [71].

Predicting offsets instead of coordinates simplifies the problem and makes it easier
for the network to learn [36]. As illustrated in Figure 2.19, the diversity of the predictions is

36

maintained and each prediction focuses on a specific shape. In the real-life domain, the bounding
boxes are not arbitrary, for example, cars have very similar shapes, which are different from those
of pedestrians. Therefore, the training will be more stable when starting with diverse guesses
(i.e., anchor boxes) that are common to real-life objects [71].

Figure 2.19: An illustration of two objects (a cyclist and a car) and two anchor boxes. Observe that each anchor box
focuses on a specific shape. Images reproduced from [71].

Instead of choosing the anchor boxes by hand, YOLOv2 runs k-means clustering on the
training set bounding boxes to automatically find good priors. In [36], the authors used k = 5 as a
good trade-off between recall and model complexity. The clusters, called as dimension priors,
are significantly different than hand-picked anchor boxes. An important piece of information
is that YOLOv2 takes a long time to stabilize with random initialization, since any anchor box
might end up at any point in the image, regardless of what location predicted the box. In this
sense, YOLOv2 predicts location coordinates relative to the location of the grid cell, i.e. the
network predicts 5 bounding boxes for each cell in the output feature map. A 5% mAP increase
was achieved when using dimension priors instead of hand-picked anchor boxes [36].

In YOLOv2, the input image size is 416 × 416 (instead of 448 × 448) so there is only
one center cell in the feature map. The center of the image is usually occupied by objects, so it is
better to have a single location at the center to predict these objects instead of four locations that
are all nearby (see Figure 2.20). Also, one pooling layer was eliminated in order to make the
output of the convolutional layers higher resolution. Then, as YOLOv2 downsamples the image
by a factor of 32, an input image of 416 × 416 generates an output feature map of 13 × 13 [36].

(a) 7 × 7 (b) 8 × 8

Figure 2.20: Center cells on both (a) odd and (b) even output feature maps. It is better to have a single location at
the center than four locations that are all nearby. Images adapted from [71].

37

The YOLOv2 architecture is shown in Table 2.4. Note that some modifications were
made to the Darknet-19 model for detection. The last convolutional layer was removed and three
3 × 3 convolutional layers with 1024 filters each were added, as well as a 1 × 1 convolutional
layer. While a 13 × 13 feature map is sufficient for large objects, YOLOv2 might benefit from
fine-grained features for detecting smaller objects. In this way, a pass-through layer was added to
brings features from an earlier layer at 26 × 26 resolution. It reshapes the 26 × 26 × 512 feature
map into a 13 × 13 × 2048 feature map, which can be concatenated with the original features.
Running the detector on this expanded feature map gives a modest 1% mAP increase [36].

Table 2.4: The YOLOv2 architecture.

Layer Filters Size Input Output
0 conv 32 3 × 3/1 416 × 416 × 3 416 × 416 × 32
1 max 2 × 2/2 416 × 416 × 32 208 × 208 × 32
2 conv 64 3 × 3/1 208 × 208 × 32 208 × 208 × 64
3 max 2 × 2/2 208 × 208 × 64 104 × 104 × 64
4 conv 128 3 × 3/1 104 × 104 × 64 104 × 104 × 128
5 conv 64 1 × 1/1 104 × 104 × 128 104 × 104 × 64
6 conv 128 3 × 3/1 104 × 104 × 64 104 × 104 × 128
7 max 2 × 2/2 104 × 104 × 128 52 × 52 × 128
8 conv 256 3 × 3/1 52 × 52 × 128 52 × 52 × 256
9 conv 128 1 × 1/1 52 × 52 × 256 52 × 52 × 128
10 conv 256 3 × 3/1 52 × 52 × 128 52 × 52 × 256
11 max 2 × 2/2 52 × 52 × 256 26 × 26 × 256
12 conv 512 3 × 3/1 26 × 26 × 256 26 × 26 × 512
13 conv 256 1 × 1/1 26 × 26 × 512 26 × 26 × 256
14 conv 512 3 × 3/1 26 × 26 × 256 26 × 26 × 512

Layer Filters Size Input Output
15 conv 256 1 × 1/1 26 × 26 × 512 26 × 26 × 256
16 conv 512 3 × 3/1 26 × 26 × 256 26 × 26 × 512
17 max 2 × 2/2 26 × 26 × 512 13 × 13 × 512
18 conv 1024 3 × 3/1 13 × 13 × 512 13 × 13 × 1024
19 conv 512 1 × 1/1 13 × 13 × 1024 13 × 13 × 512
20 conv 1024 3 × 3/1 13 × 13 × 512 13 × 13 × 1024
21 conv 512 1 × 1/1 13 × 13 × 1024 13 × 13 × 512
22 conv 1024 3 × 3/1 13 × 13 × 512 13 × 13 × 1024
23 conv 1024 3 × 3/1 13 × 13 × 1024 13 × 13 × 1024
24 conv 1024 3 × 3/1 13 × 13 × 1024 13 × 13 × 1024
25 route [16]
26 reorg /2 26 × 26 × 512 13 × 13 × 2048
27 route [26, 24]
28 conv 1024 3 × 3/1 13 × 13 × 3072 13 × 13 × 1024
29 conv 425 1 × 1/1 13 × 13 × 1024 13 × 13 × 425
30 detection

Another concept introduced in YOLOv2 is multi-scale training (see Figure 2.21a). The
original YOLO uses a fixed input resolution of 448 × 448 pixels. Since YOLOv2 uses only
convolutional and pooling layers, it can be resized on the fly. In short, every 10 batches the
network randomly chooses a new image dimension size from 320× 320 to 608× 608 pixels (these
are the default values). This approach forces the network to learn to predict well across a variety
of input dimensions, increasing the mAP by 1.4% [36].

(a) Multi-scale training

Me
an
 A
ve
ra
ge
 P
re
ci
si
on

Frames Per Second

R-CNN

YOLO

Fast R-CNN

Faster R-CNN

Faster R-CNN
Resnet SSD512

SSD300

YOLOv2
80

70

60
0 50 10030

(b) Accuracy and speed on Pascal VOC 2007

Figure 2.21: YOLO’s multi-scale training. YOLOv2 can be resized on the fly, as it uses only convolutional and
pooling layers. (a) illustrates multi-scale training and (b) shows the trade-off between performance and accuracy
when running YOLOv2 at different input resolutions. Images reproduced from [36].

According to Figure 2.21b, YOLOv2 operates as a cheap, fairly accurate detector at low
resolutions. At high resolution, on the other hand, YOLOv2 is a very accurate detector with

38

Table 2.5: The path from YOLO to YOLOv2. Table reproduced from [36].

YOLO YOLOv2

batch normalization? X X X X X X X X
high-resolution classifier? X X X X X X X

fully convolutional? X X X X X X
hand-picked anchor boxes? X X

new network? X X X X X
dimension priors? X X X X

pass-through layer? X X X
multi-scale training? X X

high-resolution detector? X

Pascal VOC 2007 mAP (%) 63.4 65.8 69.5 69.2 69.6 74.4 75.4 76.8 78.6

78.6 mAP while still operating above real-time speeds. A summary of the mAP improvements
obtained after applying the concepts described in this section can be found in Table 2.5.

It is important to mention that the Fast-YOLOv2 model is basically the Fast-YOLO
model with some of the concepts (e.g., batch normalization, dimension priors, higher resolution
output, among others) described in this section. Thus, the Fast-YOLOv2 model is often referred
to as Fast-YOLO [30,72].

2.3.2 YOLOv3
Although outstanding results have been achieved in object detection using YOLOv2, its architec-
ture still lacks some concepts that are currently essential in most state-of-the-art detectors such as
residual blocks, shortcut connections (or skip connections), and upsampling [73]. Based on that,
Redmon and Farhadi [37] introduced YOLOv3 (the latest version of YOLO), which uses various
tricks to improve training and increase performance, including those concepts mentioned above,
multi-scale predictions and a better backbone classifier. In YOLOv3, these tricks are employed
along with many of the concepts introduced in YOLOv2 (e.g., anchor boxes, multi-scale training,
and batch normalization). In this section, we do not list the impact of each new trick used in
YOLOv3 on the mAP obtained on detection tasks, as this information was not provided in [37].

The softmax function, which imposes the assumption that each bounding box has exactly
one class, was replaced in YOLOv3 by independent logistic classifiers in order to predict multiple
labels for an object. According to [37], this formulation helps when working on more complex
domains such as the Open Images dataset [74], in which there are many overlapping labels
(e.g., woman and person). YOLOv3 also changes the way it calculates the loss function. The
objectness score for each bounding box should be 1 if the bounding box prior overlaps a ground
truth object by more than any other prior. YOLOv3 only assigns one bounding box prior for each
ground truth object, and thus the prediction is ignored for other priors with overlap greater than a
predefined threshold (default = 0.5). Lastly, if a bounding box prior is not assigned to a ground
truth object it incurs no loss for coordinate or class predictions, only objectness [37].

A new network, called Darknet-53, is used for feature extraction in YOLOv3. As can
be seen in Table 2.6, Darknet-53 has 53 convolutional layers (hence the name) and is a hybrid
approach between Darknet-19 and residual networks, as it uses successive 3 × 3 and 1 × 1
convolutional layers, has some shortcut connections and is significantly larger [37]. Shortcut
connections are those skipping one or more layers. In [75], shortcut connections simply perform

39

identity mapping, and their outputs are added to the outputs of the stacked layers (see Figure 2.22).
According to Han et al. [76], Residual Networks (ResNets) [75] leverage the concept of shortcut
connections inside a residual block to make it possible to train much deeper network architectures.

Table 2.6: The Darknet-53 backbone classifier, used for feature extraction in YOLOv3. Darknet-53 contains a
softmax layer, although it is replaced by independent logistic classifiers in YOLOv3. Table reproduced from [37].

Type
Convolutional
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Convolutional
Convolutional
Convolutional
Residual
Avgpool
Connected
Softmax

Filters
32
64
32
64

128
64

128

256
128
256

512
256
512

1024
512
1024

Size
3 × 3
3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

3 × 3 / 2
1 × 1
3 × 3

Global
1000

Output
256 × 256
128 × 128

128 × 128
64 × 64

64 × 64
32 × 32

32 × 32
16 × 16

16 × 16
8 × 8

8 × 8

1×

2×

8×

8×

4×

identity

weight layer

weight layer

relu

relu

F(x) + x

x

F(x)
x

Figure 2.22: A residual block. Image reproduced from [75].

As can be seen in Table 2.7, Darknet-53 is much more powerful than its predecessor
(Darknet-19) but still more efficient than ResNet-101 and ResNet-152. YOLOv3’s backbone
performs on par with state-of-the-art classifiers with fewer Floating-Point Operations (FLOP)
and more speed [37]. In addition, Darknet-53 achieves the highest FLOP per second, which
means that the network structure better utilizes the GPU, making it more efficient to evaluate and
thus faster. According to [37], this is mainly because ResNets have too many layers and are not
very efficient. The experiments were carried out on an NVIDIA Titan X at 256 × 256 pixels.

40

Table 2.7: Comparison of backbones on ImageNet [15]. Accuracy (top-1 and top-5), Billion Floating-Point
Operations (BFLOP), BFLOP per second, and FPS for various networks. Table reproduced from [37].

Backbone Top-1 Top-5 BFLOP BFLOP/s FPS

Darknet-19 [36] 74.1 91.8 7.29 1246 171
ResNet-101 [75] 77.1 93.7 19.7 1039 53
ResNet-152 [75] 77.6 93.8 29.4 1090 37
Darknet-53 [37] 77.2 93.8 18.7 1457 78

The most striking feature of YOLOv3 is that it predicts bounding boxes at three different
scales, which are precisely given by downsampling the dimensions of the input image by 32, 16
and 8, respectively [73]. For example, using an input size of 416 × 416 pixels, the bounding
boxes are predicted at the following scales: 13 × 13, 26 × 26 and 52 × 52 pixels. The features are
extracted from those scales using a concept similar to Feature Pyramid Networks (FPNs) [77].
Note that detections at different layers help address the issue of detecting small objects, a frequent
complaint with YOLO and YOLOv2. The 13 × 13 layer is responsible for detecting large objects,
while the 26 × 26 layer detects medium objects and the 52 × 52 layer detects smaller objects [73].

The first detection is made by adding several convolutional layers to the base feature
extractor (i.e., Darknet-53). The last of those layers predicts a 3D tensor encoding the bounding
box, objectness, and class predictions. Based on experiments carried out in the COCO dataset [39],
YOLOv3 predicts 3 bounding boxes at each scale so the tensor is W × H × [3 × (4 + 1 + 80)]
for the 4 bounding box offsets, 1 objectness prediction, and 80 class predictions. The W and
H variables refer to the width and height of the downsampled image, respectively. Next, the
feature map from two layers previous is upsampled by 2 and merged with a feature map from
earlier in the network, obtaining more meaningful semantic information from the upsampled
features and finer-grained information from the earlier feature map. The second detection is
made by adding a few more convolutional layers to process this combined feature map, predicting
a similar tensor, although now twice the size. Finally, this process is performed one more time to
predict bounding boxes for the final scale, which benefit from all the prior computation as well as
fine-grained features from early on in the network [37].

As in YOLOv2, YOLOv3 predicts bounding boxes using dimension clusters as anchor
boxes. Furthermore, the bounding box priors are still determined using k-means clustering.
In [37], 9 clusters were selected based on the COCO dataset: (10 × 13), (16 × 30), (33 × 23),
(30 × 61), (62 × 45), (59 × 119), (116 × 90), (156 × 198) and (373 × 326). These 9 priors are
grouped into three different groups according to their scale [37, 71].

In the latest edition of the COCO object detection task, the AP was averaged over
multiple IoU values. Specifically, 10 IoU thresholds were used [0.05, 0.15, . . . , 0.95]. This was
a break from tradition, where AP is computed at a single IoU value of 0.5. The ‘old’ metric
(used on Pascal VOC) is now referred to as AP50. According to the organizers of the COCO
detection task, averaging over IoUs rewards detectors with better localization3. Therefore, in [37],
YOLOv3 was evaluated based on both metrics on the COCO dataset and compared to recent
state-of-the-art methods. Results are presented in Table 2.8.

In terms of the COCO’s newAPmetric, YOLOv3 is on par with the SSD variants [81,82]
but is three times faster. YOLOv3 was still outperformed by other models in that metric though.
On the other hand, when considering the AP50 metric, YOLOv3 performs almost on par with

3For more information about the evaluation metrics used by COCO, refer to http://cocodataset.org/
#detection-eval.

http://cocodataset.org/#detection-eval
http://cocodataset.org/#detection-eval

41

Table 2.8: Object detection results on the COCO dataset. YOLOv3 is much better than Single Shot MultiBox
Detector (SSD) variants and comparable to state-of-the-art models on the AP50 metric. The APS , APM and APL

metrics refer to the AP for small, medium and large objects, respectively. Table reproduced from [37,78].

Approach Backbone AP AP50 AP75 APS APM APL

Two-stage methods
Faster R-CNN+++ [75] ResNet-101-C4 34.9 55.7 37.4 15.6 38.7 50.9
Faster R-CNN w/ FPN [77] ResNet-101-FPN 36.2 59.1 39.0 18.2 39.0 48.2
Faster R-CNN by G-RMI [79] Inception-ResNet-v2 34.7 55.5 36.7 13.5 38.1 52.0
Faster R-CNN w/ TDM [80] Inception-ResNet-v2-TDM 36.8 57.7 39.2 16.2 39.8 52.1

One-stage methods
YOLOv2 [36] DarkNet-19 21.6 44.0 19.2 5.0 22.4 35.5
SSD513 [81, 82] ResNet-101-SSD 31.2 50.4 33.3 10.2 34.5 49.8
DSSD513 [82] ResNet-101-DSSD 33.2 53.3 35.2 13.0 35.4 51.1
RetinaNet [78] ResNet-101-FPN 39.1 59.1 42.3 21.8 42.7 50.2
RetinaNet [78] ResNeXt-101-FPN 40.8 61.1 44.1 24.1 44.2 51.2
YOLOv3 608 × 608 [37] Darknet-53 33.0 57.9 34.4 18.3 35.4 41.9

other state-of-the-art object detectors such as RetinaNet [78], while being considerably faster
(see Figure 2.23). Redmon and Farhadi [37] stated that this indicates that YOLOv3 is a very
strong detector that excels at producing decent boxes for objects. However, performance drops
significantly as the IoU threshold increases indicating that YOLOv3 struggles to get the boxes
perfectly aligned with the object. As can be seen in Figure 2.23, YOLOv3 is better suited for
applications that require real-time performance, for example, ALPR.

50 100 150 200 250
inference time (ms)

48

50

52

54

56

58

C
O

C
O

 m
AP

-5
0

B C

D

E

F

G

RetinaNet-50
RetinaNet-101

YOLOv3

Method
[B] SSD321
[C] DSSD321
[D] R-FCN
[E] SSD513
[F] DSSD513
[G] FPN FRCN
RetinaNet-50-500
RetinaNet-101-500
RetinaNet-101-800
YOLOv3-320
YOLOv3-416
YOLOv3-608

mAP-50
45.4
46.1
51.9
50.4
53.3
59.1
50.9
53.1
57.5
51.5
55.3
57.9

time
61
85
85
125
156
172
73
90
198
22
29
51

Figure 2.23: Speed/accuracy trade-off of object detectors in the COCO dataset based on the AP50 metric. YOLOv3
runs significantly faster than other detection methods with comparable performance. Image reproduced from [37].

A smaller and faster model, called Fast-YOLOv3, was provided along with YOLOv3.
As shown in Table 2.9, Fast-YOLOv3 predicts bounding boxes at two different scales, which are

42

precisely given by downsampling the dimensions of the input image by 32 and 16, respectively.
Fast-YOLOv3 consists of convolutional, pass-through and upsampling layers added to the first 13
layers of Fast-YOLOv2. Detections are made using ‘yolo’ layers, which use logistic activation.

Table 2.9: The Fast-YOLOv3 model.

Layer Filters Size Input Output
0 conv 16 3 × 3/1 416 × 416 × 3 416 × 416 × 16
1 max 2 × 2/2 416 × 416 × 16 208 × 208 × 16
2 conv 32 3 × 3/1 208 × 208 × 16 208 × 208 × 32
3 max 2 × 2/2 208 × 208 × 32 104 × 104 × 32
4 conv 64 3 × 3/1 104 × 104 × 32 104 × 104 × 64
5 max 2 × 2/2 104 × 104 × 64 52 × 52 × 64
6 conv 128 3 × 3/1 52 × 52 × 64 52 × 52 × 128
7 max 2 × 2/2 52 × 52 × 128 26 × 26 × 128
8 conv 256 3 × 3/1 26 × 26 × 128 26 × 26 × 256
9 max 2 × 2/2 26 × 26 × 256 13 × 13 × 256
10 conv 512 3 × 3/1 13 × 13 × 256 13 × 13 × 512
11 max 2 × 2/1 13 × 13 × 512 13 × 13 × 512

Layer Filters Size Input Output
12 conv 1024 3 × 3/1 13 × 13 × 512 13 × 13 × 1024
13 conv 256 1 × 1/1 13 × 13 × 1024 13 × 13 × 256
14 conv 512 3 × 3/1 13 × 13 × 256 13 × 13 × 512
15 conv 255 1 × 1/1 13 × 13 × 512 13 × 13 × 255
16 yolo
17 route [13]
18 conv 128 1 × 1/1 13 × 13 × 256 13 × 13 × 128
19 upsample 2× 13 × 13 × 128 26 × 26 × 128
20 route [19, 8]
21 conv 256 3 × 3/1 26 × 26 × 384 26 × 26 × 256
22 conv 255 1 × 1/1 26 × 26 × 256 26 × 26 × 255
23 yolo

43

3 Related Work

In this chapter, we briefly review several recent works that use deep learning approaches in the
context of ALPR. For relevant studies using conventional image processing techniques, please
refer to [4, 6, 22,25, 27,35, 83–88]. We first discuss works related to each stage and then works
that do not fit into the other sections. Although ALPR systems based on deep learning techniques
usually address the character segmentation and recognition together, we also described some
methods in which character recognition was performed separately, as there are works focused on
this stage. This chapter concludes with final remarks.

3.1 License Plate Detection
Many authors have addressed the LP detection stage using object detection CNNs. Silva and
Jung [11] noticed that the Fast-YOLO model achieved a low recall rate when detecting LPs
without prior vehicle detection. Therefore, they used the Fast-YOLOmodel arranged in a cascaded
manner to first detect the frontal view of the cars and then their LPs in the detected patches,
attaining high precision and recall rates. Their approach is able to process 185 FPS on a high-end
GPU assuming that a single vehicle is being processed.

Hsu et al. [40] customized the YOLO and YOLOv2 models exclusively for LP detection.
The main customizations included (i) using a larger input size in order to detect smaller objects
and (ii) adapting the bounding box estimation so that each grid cell predicts only one bounding
box to eliminate FPs. Despite the fact that the modified versions of YOLO performed better and
were able to process 54 FPS on a high-end GPU, we believe that LP detection approaches should
be even faster (i.e., 150+ FPS) since the LP characters still need to be recognized.

Li et al. [14] trained a 4-layer CNN based on characters cropped from general text
to perform a character-based LP detection. The network was employed in a sliding-window
fashion across the entire image to generate a text salience map. Text-like regions were extracted
based on the clustering nature of the characters. Connected Component Analysis (CCA) is
subsequently applied to produce the initial candidate boxes. Then, another LP/non-LP CNN
(also with 4 layers) was trained to remove FPs. Finally, the bounding boxes were refined through
a projection-based method. Although the precision and recall rates obtained were higher than
those achieved in previous works, this sequence of methods (see Figure 3.1) is too expensive for
real-time applications, taking more than 2 seconds to process a single image when running on an
NVIDIA Tesla K40c GPU.

Bulan et al. [8] first extracted a set of candidate LP regions using a weak Sparse Network
of Winnows (SNoW) classifier trained with Successive Mean Quantization Transform (SMQT)
features. Afterward, a strong classifier was employed to discriminate between legible and illegible
LP images. The latter set includes cases where the LP is missing, partially occluded, too dark,
too bright, damaged, etc. AlexNet [55] was used for extracting features of each candidate region,
while a linear SVM was trained to differentiate between regions that either do or do not contain

44

(a) (b) (c)

(d) (e) (f)

Figure 3.1: The LP detection approach proposed by Li et al. [14]. (a) input image; (b) text salience map generated
after the sliding window-based detection; (c) text salience map after applying the NMS and smoothing algorithms;
(d) candidate bounding boxes generated by CCA; (e) candidate bounding boxes after the elimination of FPs; (f) final
bounding boxes after box refining and LP/non-LP classification. Images reproduced from [14].

an LP. Their method was configured to return 10 candidate Region of Interests (ROIs) for an
input image. The top ROI returned by the strong classifier contained an LP in over 96% of the
time. The authors reported that their approach processes 5 FPS on an NVIDIA GeForce GTX
570 GPU. The experiments were carried out only on a private dataset.

Rafique et al. [89] applied SVMs and Region-based CNNs (RCNNs) for LP detection,
noting that RCNNs are best suited for real-time systems. Dong et al. [26] first detected LP
candidates using a Region Proposal Network (RPN) and then classified the extracted patches
through an RCNN. The RCNN also regresses the LP corner positions, allowing to rectify the LPs
for the next stages. The reported average precision was 96.68% at 11 FPS.

Kurpiel et al. [90] partitioned the input image in sub-regions, forming an overlapping
grid. A score for each region was produced using a CNN and the LPs were detected by analyzing
the outputs of neighboring sub-regions. On an NVIDIA GeForce GT-740M GPU, it took 230 ms
to detect LPs in images with multiple vehicles, achieving a recall rate of 83% on a challenging
public dataset introduced by them. In [91], the LP detection approach relied on a 9-layer CNN
trained with binary character/non-character images. For binarization, the Canny edge detector
was employed. The experiments were performed in several datasets (with LPs from multiple
countries), reaching accuracy rates between 93.67% and 97.34%.

Xie et al. [41] proposed a YOLO-based model to predict the LP rotation angle in addition
to its coordinates and confidence value. Their network consists of 7 convolutional layers and 3
fully connected ones. Prior to that, another CNN (with the same architecture) was applied to
determine the attention region in the input image, assuming that some distance will inevitably
exist between any two LPs. By cascading both models, their approach outperformed all baselines
in three public datasets, while still running in real time. Despite the impressive results, it is
important to highlight two limitations in their work: (i) the authors simplified the problem by

45

forcing their ALPR system to output only one bounding box per image; (ii) motorcycle LPs might
be lost when determining the attention region since, in some scenarios (e.g., traffic lights), they
might be very close.

Selmi et al. [92] divided the LP detection stage into preprocessing and classification.
First, candidate regions were estimated through conventional techniques such as morphological
operations, fine contours, geometric filtering, etc. Afterward, a 4-layer CNN was employed to
classify each region as LP/non-LP. The method was evaluated in two public datasets, failing in
some images with multiple vehicles and in cases where the LP was inclined or too bright/dark.
This was expected since handcrafted features are easily affected by noise and might not be robust
to certain variations. The execution time was not reported.

Gonçalves et al. [13] presented a 15-layer CNN to detect LPs directly in the frame, i.e.
without vehicle detection. The authors showed that even at a high IoU threshold (e.g, 0.7), it is
not possible to guarantee that the detected LP encloses all characters (see Figure 3.2). Therefore,
a new loss function that penalizes over-segmented LPs was proposed to avoid detections on the
inner side of the LP. Their approach was evaluated on public datasets and worked best on images
captured by static cameras. According to the authors, this is related to the fact that non-static
backgrounds contain much more patterns that can be confused with an LP.

Figure 3.2: Three LPs detected with the same IoU value with the ground truth. Even at a high IoU threshold, it is
not possible to guarantee that the detected LP encloses all characters. The ground truth bounding boxes are shown in
blue and the hypothetical predictions are shown in orange. All three predictions have IoU = 0.7 with the ground
truth, however, only the rightmost has all LP characters completely visible. Images reproduced from [13].

Silva and Jung [33] detected first the vehicles in the input image using the YOLOv2
model without any change or refinement. The outputs related to vehicles (i.e., cars and buses)
were merged, whereas the outputs related to other classes were ignored. Then, they proposed a
network, called Warped Planar Object Detection Network (WPOD-NET), that searches for LPs
and regresses one affine transformation per detection, allowing a rectification of the LP area to a
rectangle resembling a frontal view. Their approach, illustrated in Figure 3.3, was trained using
many synthetically warped versions of real images to augment the training dataset allowing the
network to be trained from scratch using less than 200 manually labeled images. The unwarping
greatly helped the OCR task when the LP was strongly distorted. Although the experiments
were performed in public datasets, the results and execution time of this particular stage were
not reported. Remark that, as pointed out by the authors, the solution should be extended for
motorcycles since their LPs pose new challenges due to differences in aspect ratio and layout.

3.2 Character Recognition
Menotti et al. [93] proposed the use of random CNNs to extract features for character recognition.
Their CNN architecture was chosen from thousands of random possibilities and its filter weights
were also set at random. By training a linear SVM on the resulting features, a significantly better
performance was achieved when compared to using image pixels or learning the filters weights
with backpropagation. The recognition rates reported were 98% and 96% for digits and letters,
respectively. Remark that, in the ALPR context, a single mistake may imply in an incorrect

46

Figure 3.3: The LP detection approach proposed by Silva and Jung [33]. Note that its execution time is highly
dependent on the number of vehicles detected in the input image. Image reproduced from [33].

identification of the vehicle. Thus, this approach would correctly recognize only ≈ 82% of the
vehicles, considering that it was evaluated in Brazilian LPs which have 3 letters and 4 digits.

Selmi et al. [92] proposed a 37-class CNN with four convolutional layers and two fully
connected layers for character recognition. In addition to the 36 classes related to letters and
digits, there is a ‘non-character’ class to eliminate FPs. Although good results were reported in
two public datasets, their CNN model was compared only with conventional image processing
techniques and no information regarding processing time was provided.

Yang et al. [94] stated that most ALPR solutions do not address Chinese characters in
the character recognition stage. Thus, they proposed an architecture (see Figure 3.4) to this end.
A CNN with 4 convolutional layers was used for feature extraction, while a kernel-based Extreme
Learning Machine (ELM) classifier was employed for recognition. The results reported were
better than those obtained with other classifiers such as softmax and SVMs. According to the
authors, the errors occurred mainly due to the underrepresentation of some characters in the
training set. The experiments were performed on a proprietary dataset containing only Chinese
characters and the execution time was not reported.

Figure 3.4: The architecture proposed by Yang et al. [94] for Chinese character recognition, which consists of two
subsystems: a network with convolutional and pooling layers for feature extraction, and a fully connected classifier
based on the kernel ELM algorithm for final decision making. Image reproduced from [94].

47

3.3 License Plate Recognition
In [11], a YOLO-based model was proposed to simultaneously detect and recognize all characters
within a cropped LP. This model, called CR-NET, consists of the first eleven layers of YOLO and
four other convolutional layers added to improve nonlinearity. Heuristic rules were used to adapt
the results produced by CR-NET according to Brazilian LPs. While impressive FPS rates (i.e.,
448 FPS on a high-end GPU) were attained in experiments carried out in the SSIG-SegPlate
dataset, less than 65% of the LPs were correctly recognized. According to the authors, the
accuracy bottleneck of their approach was letter recognition since the training set of characters of
the SSIG-SegPlate dataset is highly unbalanced (in particular, letters).

In [33], Silva and Jung generalized CR-NET by retraining it with an enlarged training
set composed of real and artificially generated images using font-types similar to the LPs of
the target regions (i.e., Brazil, Europe and the United States), as shown in Figure 3.5. In this
way, the retrained network became much more robust for the detection and classification of real
characters on Brazilian LPs and also on LPs from other regions, outperforming previous works
and commercial systems in three public datasets.

Figure 3.5: Artificial LP samples generated in [33]. Such LPs use font-types similar to the LPs of the target regions
(i.e., Brazil, Europe and the United States), which makes the network more robust for the detection and classification
of real characters of LPs issued in those regions. Image reproduced from [33].

Bulan et al. [8] attained a very high accuracy in LP recognition by jointly performing
the character segmentation and recognition tasks using a probabilistic inference method based
on Hidden Markov Models (HMMs). The authors developed a language model (a Naive Bayes
classifier) based on the LP text length and the number of times each template (i.e., a letter/digit
combination) exists in the training data. The most likely LP was determined by applying the
Viterbi algorithm. Despite the outstanding results obtained, this approach was evaluated only in
a private dataset and takes more than one second to process each image on a GTX 570 GPU.

Li et al. [14] proposed to perform character recognition as a sequence labeling problem,
also without the character-level segmentation. Sequential features were first extracted from the
entire LP patch using a 9-layer CNN in a sliding window manner. Then, Bidirectional Recurrent
Neural Networks (BRNNs) with Long Short-Term Memory (LSTM) were applied to label the
sequential features. Lastly, Connectionist Temporal Classification (CTC) was employed for
sequence decoding. Figure 3.6 illustrates the overall structure of this approach. The results
showed that this method attained better recognition rates than the baselines. Nevertheless, only
Taiwanese LPs were used in the experiments and the execution time was not reported.

Dong et al. [26] claimed that the method proposed in [14] is very fragile to distortions
caused by viewpoint change and therefore is not suitable for LP recognition in the wild. Thus,
an LP rectification step is employed first in their approach. Afterward, a CNN was trained to
recognize Chinese characters, while a shared-weight CNN recognizer was used for digits and

48

Figure 3.6: The sequence labeling-based approach proposed by Li et al. [14] for LP recognition. First, sequential
features are extracted by a 9-layer CNN in a sliding window manner. Then, BRNNs with LSTM are used for
sequence labeling. Lastly, CTC is employed for sequence decoding. Image reproduced from [14].

English letters, making full use of the limited training data. The accuracy rate attained for
Chinese LPs was 89.05%. The authors did not report the execution time of this particular stage.

Gonçalves et al. [13] designed a multi-task CNN with 14 layers to simultaneously locate
and recognize all LP characters. Promising results (in terms of both accuracy and execution
time) were achieved in public datasets when taking advantage of data augmentation techniques.
However, their network was designed to handle only Brazilian LPs.

Zhuang et al. [95] proposed a semantic segmentation technique followed by a character
count refinement module to recognize the characters of an LP. Their framework is illustrated in
Figure 3.7. For semantic segmentation, they simplified the DeepLabV2 (ResNet-101) model [96]
by removing the multi-scaling process, increasing computational efficiency. According to the
authors, the purpose of the multi-scaling process is to fuse hierarchical global information,
however, in the LP recognition task, the semantic areas of different characters have a lower
correlation. After obtaining the LP semantic map, the character areas were generated through
CCA. Finally, Inception-v3 [97] and AlexNet [55] were adopted as the character classification
and character counting models, respectively. The authors claimed that both an outstanding
recognition performance and a high computational efficiency were attained. Nevertheless, they
assumed that LP detection is easily accomplished and used cropped patches containing only
the LP with almost no background as input. Furthermore, their system is not able to process
images in real time (it processes 25 FPS on a high-end GPU), especially when considering
the time required for the LP detection stage, which is generally more time-consuming than the
recognition one.

49

Figure 3.7: Illustration of the framework proposed by Zhuang et al. [95] for LP recognition. Their framework
consists of two key modules: semantic segmentation and counting refinement. The former produces the semantic
map and the initial character sequence, while the latter generates the final result (i.e., the LP text) through counting
characters. Image reproduced from [95].

3.4 Miscellaneous
Some papers [98–101] focus on deblurring the LPs, which is very useful for LP recognition. Lu
et al. [98] proposed a scheme based on sparse representation to identify the blur kernel, while
Svoboda et al. [101] employed a text deblurring CNN for reconstruction of blurred LPs. Despite
achieving outstanding qualitative results (see Figure 3.8), the additional computational cost of a
deblurring stage usually is prohibitive for real-time ALPR applications.

Figure 3.8: Blurred LPs captured by surveillance cameras and their respective reconstructions based on direct CNN
deblurring. The network was trained for specific viewpoints using artificial data. Image reproduced from [101].

Masood et al. [18] presented an end-to-end ALPR system, called Sighthound, using a
sequence of deep CNNs for LP detection, character detection (or segmentation) and character
recognition. As this is a commercial system, little information is given about the network models
used in each stage. For character detection, a binary network classifier was trained with LP
characters as positives and symbols (e.g., wheelchair, flags, etc.) as negatives. According to
the authors, the variety of character fonts and hard negative samples improved the robustness
of their system, which outperformed other commercial solutions (e.g., OpenALPR [102]) in
public datasets. It is worth noting that the performance rates of commercial systems are
often overestimated for promotional reasons [4]. As Sighthound has a trial version through
an Application Programming Interface (API), it is often used as a baseline in the ALPR
literature [11, 13, 30, 33].

50

3.5 Final Remarks
The approaches developed for ALPR are still limited. In many studies, the authors only addressed
part of the ALPR pipeline (e.g., LP detection [22,40,41,90] or character/LP recognition [93–95]),
or performed their experiments on datasets that do not represent real-world or challenging
scenarios, making it difficult to accurately evaluate the presented methods. In addition, some
authors used only private datasets to evaluate the proposed methods [8, 26,94]. In this regard,
we introduce a public dataset for ALPR that includes 4,500 fully annotated images from 150
vehicles in real-world scenarios where both the vehicle and the camera (inside another vehicle)
are moving. Compared to the SSIG-SegPlate dataset [32], which is the public dataset of Brazilian
LPs best known and most frequently used in the ALPR context, our dataset has more than twice
the images and contains a larger variety in different aspects.

In this work, the proposed system is evaluated in eight public datasets that present a
great variety in the way they were collected, with images of various types of vehicles (including
motorcycles) and numerous LP layouts. It should be noted that, in most of the works in the
literature, no more than three datasets were used in the experiments. In addition, despite the fact
that motorcycles are one of the most popular transportation means in metropolitan areas [103],
motorcycle images have not been used in the assessment of most ALPR systems in the literature.

Most of the approaches are not capable of recognizing LPs in real time (i.e., 30 FPS) [14,
17, 33, 95], making it impossible for them to be applied in some applications. Furthermore,
several authors do not report the execution time of the proposed methods or report the time
required only for a specific stage [14,18,26,92,94], making it difficult an accurate analysis of
their speed/accuracy trade-off, as well as their applicability. In this sense, at each stage, we
evaluate different YOLO models with various modifications, carefully optimizing and combining
them aiming to achieve the best speed/accuracy trade-off. In our experiments, both the accuracy
and execution time are reported to enable fair comparisons in future works.

It is important to highlight that although outstanding results in terms of mAP have been
achieved with other object detectors such as SSD [81] and RetinaNet [78], in this work we employ
YOLO since it focuses on an extreme speed/accuracy trade-off [78], which is essential in our
domain application, being able to process more than twice as many FPS as other detectors while
still achieving competitive results [36, 37].

We consider LP recognition as the current bottleneck of ALPR systems since (i) impres-
sive LP detection results have been reported in recent works [22, 30, 41], both in terms of recall
rate and execution time; (ii) OCR approaches must work as close as possible to the optimality
(i.e., 100% of character recognition rate) in the ALPR context, as a single mistake may imply
in incorrect identification of the vehicle [10]. Therefore, we propose a unified approach for LP
detection and layout classification to improve the recognition results through post-processing
rules. To the best of our knowledge, this is the first time a layout classification stage is proposed
to improve LP recognition. Additionally, we design and apply data augmentation techniques
to simulate LPs of other layouts and also to generate LP images with characters that have few
instances in the training set, as many examples are needed to effectively train CNNs. Hence,
unlike [11,94], we avoid errors in the recognition stage due to highly unbalanced training sets
of LP characters.

51

4 Proposal

This chapter describes our proposal and it is divided into two sections. First, we introduce the
UFPR-ALPR dataset and its statistics. Then, we present the proposed ALPR system in detail,
which consists of using YOLO models fine-tuned for each task, several data augmentation tricks
to make our system more robust, and a unified approach for LP detection and layout classification
to improve the recognition results through post-processing rules.

4.1 UFPR-ALPR Dataset
The dataset contains 4,500 images taken from inside a vehicle driving through regular traffic in
an urban environment. These images were obtained from 150 videos with a duration of 1 second
and frame rate of 30 FPS. Thus, the dataset is divided into 150 vehicles, each with 30 images
with only one visible LP in the foreground. Figure 4.1 shows the diversity of the dataset1.

Figure 4.1: Sample images of the UFPR-ALPR dataset. First three rows show the variety in backgrounds, lighting
conditions, as well as vehicle/LP positions and types. The 4th row shows examples of vehicle and LP annotations.
The LPs were blurred due to privacy constraints.

The images were acquired with three different cameras and are available in the Portable
Network Graphics (PNG) format with a size of 1,920 × 1,080 pixels. The cameras used

1The UFPR-ALPR dataset is publicly available to the research community at https://web.inf.ufpr.
br/vri/databases/ufpr-alpr/ subject to some privacy restrictions.

https://web.inf.ufpr.br/vri/databases/ufpr-alpr/
https://web.inf.ufpr.br/vri/databases/ufpr-alpr/

52

were: GoPro Hero4 Silver, Huawei P9 Lite and iPhone 7 Plus. Images obtained with different
cameras do not necessarily have the same quality, although they have the same resolution and
frame rate. This is due to different camera specifications, such as autofocus, bit rate, focal length,
and optical image stabilization. Additional information about the dataset can be seen in Table 4.1.

Table 4.1: Additional information about the UFPR-ALPR dataset: (a) how many images were captured with each
camera; (b) dimensions of vehicles, LPs and characters (width × height in pixels). It is noteworthy the great variation
in the sizes of vehicles, LPs and characters.

(a)

Camera Images
GoPro Hero4 Silver 1,500
Huawei P9 Lite 1,500
iPhone 7 Plus 1,500

Total 4,500

(b)

Info Vehicles LPs Characters
Minimum Size 93 × 243 53 × 15 2 × 9
Maximum Size 1,112 × 852 208 × 84 31 × 36
Average Size 421 × 408 96 × 38 11 × 17
Aspect Ratio 1.03 2.53 0.65

There are minor variations in the camera position due to repeated mountings of the
camera and also to simulate a real condition, where the camera is not always placed in exactly
the same position. Additionally, it should be noted that no stabilization method was used.

We collected 1,500 images with each camera (see Table 4.1a), divided as follows: 900 of
cars with gray LP, 300 of cars with red LP and 300 of motorcycles with gray LP. In Brazil,
the LPs have size and color variations depending on the type of the vehicle and its category.
Cars’ LPs have a size of 40cm × 13cm, while motorcycles LPs have 20cm × 17cm. Private
vehicles have gray LPs, while buses, taxis and other transportation vehicles have red LPs. There
are other color variations for specific categories such as official or older cars. Figure 4.2 shows
some of the different layouts of LPs found in the dataset.

(a) Car LPs

(b) Motorcycle LPs

Figure 4.2: Examples of the LP layouts found in the UFPR-ALPR dataset. In Brazil, cars’ LPs have 3 letters and
4 digits in the same row and motorcycles’ LPs have 3 letters in one row and 4 digits in another.

The dataset is split as follows: 40% for training, 40% for testing, and 20% for validation.
We adopt this protocol (i.e., with a larger test set) due to the fact that it has already been adopted
in other public datasets [32, 72], and also to provide more samples for analysis of statistical
significance. The dataset distribution was made so that each split has the same number of images
obtained with each camera, taking into account the type and position of the vehicle, the color
and the characters of the vehicle’s LP, the distance of the vehicle from the camera (based on the
height of the LP in pixels) such that each split is as representative as possible. This division
is explicitly available along with the UFPR-ALPR dataset. It is worth noting that experiments
carried out by us suggested that dividing the dataset multiple times and then averaging the results
is not necessary, as the proposed division is representative.

53

The heat maps of the distribution of the vehicles and LPs for the image frame in both
SSIG-SegPlate and UFPR-ALPR datasets are shown in Figure 4.3. As can be seen, the vehicles
and LPs are much better distributed in our dataset.

0 320 640 960 1280 1600 1920

0

180

360

540

720

900

1080

(a) Vehicles (SSIG-SegPlate)
0 320 640 960 1280 1600 1920

0

180

360

540

720

900

1080

(b) LPs (SSIG-SegPlate)

0 320 640 960 1280 1600 1920

0

180

360

540

720

900

1080

(c) Vehicles (UFPR-ALPR)
0 320 640 960 1280 1600 1920

0

180

360

540

720

900

1080

(d) LPs (UFPR-ALPR)

Figure 4.3: Heat maps illustrating the distribution of vehicles and LPs in the SSIG-SegPlate and UFPR-ALPR
datasets. The heat maps are log-normalized, meaning the distribution is even more concentrated than it appears.

In Brazil, each state uses particular starting letters for its LPs which results in a specific
range. In Paraná (where the dataset was collected), LPs range from AAA-0001 to BEZ-9999.
Therefore, the letters A and B have many more examples than the others, as shown in Figure 4.4.

A B C D E F G H I J K L M N O P Q R S T U V W X Y Z
0

500

1000

1500

2000

2500

3000

3500

le

tte
rs

Figure 4.4: Letters distribution in the UFPR-ALPR dataset.

54

Every image has the following annotations available in a text file: the camera in which
the image was taken, the vehicle’s position and information such as type (car or motorcycle),
make, model and year; the identification and position of the LP, as well as the position of its
characters. In order to determine the manufacturers and models of vehicles that we were not
familiar, we often made use of websites23 that allow users to enter an LP (or vehicle identification
number) and return several vehicle information such as the make, model and year.

We used two open-source tools for labeling the dataset, namely sloth4 and labelImg5.
The most time-consuming task was the annotation of the bounding box of the characters since
some of them (depending on the distance of the vehicle) are very small (see Table 4.1b), and
thus even a one-pixel difference might include a lot of background noise or cut a portion of
the character.

4.2 Proposed Approach
Traffic images have many textual blocks that can be confused with LPs such as traffic signs
and phone numbers on storefronts. In addition, LPs might occupy very small portions of
the image. Therefore, we propose to first locate the vehicles (including motorcycles) and
then their LPs in the detected patches. Afterward, we detect and recognize all LP characters
simultaneously by feeding the entire patch of the LP into the network. In this way, we do not
need to deal with the challenging character segmentation task, which has also been avoided in
related applications, such as handwritten numeral string recognition and image-based automatic
meter reading [72, 104, 105].

Although some approaches with such characteristics (i.e., containing a vehicle detection
stage prior to LP detection and/or avoiding character segmentation) have already been proposed
in the literature, none of them presented robustness for different LP layouts in both accuracy
and processing time, to the best of our knowledge. In [11] and [13], for instance, the authors
designed real-time ALPR systems able to process more than 50 FPS on high-end GPUs, however,
both systems were evaluated only on Brazilian LPs and presented poor recognition rates in at
least one dataset in which they were evaluated. On the other hand, outstanding results were
achieved on different scenarios in some recent works [14,17,33], however, the methods presented
in these works are computationally expensive and cannot be applied in real time (i.e., 30 FPS).
This makes them unsuitable for many real-world applications.

In order to develop an ALPR system that is robust for different LP layouts, we propose
a layout classification stage after LP detection. However, instead of performing both stages
separately, we merge the LP detection and layout classification tasks by training an object
detection network that outputs a distinct class for each LP layout. In this way, with almost no
additional cost, we employ layout-specific approaches for LP recognition in cases where the LP
and its layout are predicted with a confidence value above a predefined threshold. For example,
all Brazilian LPs have seven characters: three letters and four digits (in that order), and thus a
post-processing method is applied to avoid errors in characters that are often misclassified, such
as ‘B’ and ‘8’, ‘G’ and ‘6’, ‘I’ and ‘1’, among others. In cases where the LP and its layout are
detected with confidence below the predefined threshold, a generic approach is applied.

2https://www.carcheck.com.br/
3https://carfacts.com.br/
4The sloth tool is available at https://github.com/cvhciKIT/sloth.
5The labelImg tool is available at https://github.com/tzutalin/labelImg.

https://www.carcheck.com.br/
https://carfacts.com.br/
https://github.com/cvhciKIT/sloth
https://github.com/tzutalin/labelImg

55

As great advances in object detection have been achieved through YOLO-inspired
models [42–44], we decided to specialize it for ALPR. We use specific models for each stage6.
Thus, we can tune the parameters separately in order to improve the performance of each task.
The models used are YOLOv2, Fast-YOLOv2 and CR-NET [11], which is an architecture inspired
by YOLO for character detection and recognition. We evaluated several data augmentation
techniques and modifications to each network (e.g., changes in the input size, number of filters,
layers and anchors) to achieve the best speed/accuracy trade-off at each stage.

This section describes the proposed approach and it is divided into three subsections, one
for each stage of our ALPR system: (i) vehicle detection, (ii) LP detection and layout classification
and (iii) LP recognition. Figure 4.5 illustrates the pipeline of the system, explained throughout
this section. All parameters specified in this section are defined based on the validation set and
presented in Chapter 5, where the experimental results are reported.

Vehicles PatchesVehicle Detection LPs Patches/LayoutsLP Detection and
Layout Classification LP Recognition

ZY-0887

280-BGY

TW

TW

Heuristic Rules

Figure 4.5: The pipeline of the proposed ALPR system. First, the vehicles are detected in the input image. Then, the
LP of each vehicle is detected and its layout classified (in the example above, the LPs are Taiwanese). Finally, all
characters of each LP are recognized simultaneously, with heuristic rules being applied to adapt the results according
to the predicted layout class (e.g., Taiwanese LPs have 5 or 6 characters).

4.2.1 Vehicle Detection
In our previous work [30], we employed the Fast-YOLOv2 and YOLOv2 models at the vehicle
detection stage to be able to handle simpler and more realistic data. For simpler scenarios, the
Fast-YOLOv2 model was able to detect all vehicles correctly in much less time. However, it
was not sufficiently robust on more realistic scenarios and, therefore, the YOLOv2 model was
employed in those cases. Although all vehicles were correctly located in [30], that approach
requires prior knowledge of which scenario is being handled and also a considerable manual
effort, as the network parameters must be adjusted separately for each model/scenario.

Based on that, in this work we train a single network on several datasets, which were
collected under different conditions. Thus, our network is able to detect vehicles regardless of the
ALPR application or scenario, requiring no prior knowledge and considerably less manual effort
since its parameters are adjusted only once for all datasets. In order not to increase the overall
cost of the proposed ALPR system, we do not apply preprocessing techniques to the input image.

We conducted experiments to evaluate the following models: Fast-YOLOv2, YOLOv2,
Fast-YOLOv3 and YOLOv3. Although the Fast-YOLOv2 and Fast-YOLOv3models have correctly
located the vehicles in most cases, they failed in challenging scenarios such as images in which
one or more vehicles are partially occluded or appear in the background. Differently, impressive
results (i.e., F-measure rates above 98% in the validation set7) were obtained with both YOLOv2
and YOLOv3, which successfully detected vehicles even in those cases where the smaller models

6In order to train all YOLO-based models, we use convolutional weights pre-trained on ImageNet [15], available
at https://pjreddie.com/darknet/yolo/.

7The division of the images of each dataset into training, test and validation sets is detailed in Section 5.2.

https://pjreddie.com/darknet/yolo/

56

failed. Considering that the computational cost is one of our main concerns and YOLOv3 is
much more complex than its predecessor (see Section 2.3.2), we employ YOLOv2 for vehicle
detection. According to our experiments and domain application, it is not necessary to use a
deep model with as many layers and filters as YOLOv3 to handle the detection of one or two
classes of objects.

For vehicle detection, we perform several changes to the YOLOv2 model. First, we
changed the network input size from 416 × 416 to 448 × 288 pixels since the images used as
input to ALPR systems generally have a width greater than height. Hence, our network processes
less distorted images and performs faster, as the new input size is 25% smaller than the original.
The new dimensions were chosen based on speed/accuracy assessments with different input
sizes (from 448 × 288 to 832 × 576 pixels) using YOLO’s multi-scale training [36]. Then, we
recalculate the anchor boxes for the new input size as well as for the datasets employed in our
experiments (described in Chapter 5) using the k-means clustering algorithm available in [106].
Finally, we reduced the number of filters in the last convolutional layer to match the number of
classes. YOLOv2 uses A anchor boxes to predict bounding boxes each with four coordinates
(x, y,w, h), confidence and C class probabilities [36], so the number of filters is given by

filters = (C + 5) × A . (4.1)

We evaluated different numbers of anchors (from 3 to 9) and the best results in the validation
set were obtained using A = 5. As we intend to detect cars and motorcycles (two classes), the
number of filters in the last convolutional layer must be 35 ((2+5) × 5). According to preliminary
experiments, the results were better when using two classes instead of just one regarding both
types of vehicles.

The modified YOLOv2 architecture for vehicle detection is shown in Table 4.2. It should
be noted that we evaluated many other modifications to our detector to make it even faster, e.g.,
we tried to remove some layers (e.g., #23 and #24) and to reduce the number of filters (between
10% and 50%) in the convolutional layers. However, after those changes, our network often
failed in more realistic scenarios (similarly to Fast-YOLOv2 and Fast-YOLOv3).

Table 4.2: The YOLOv2 architecture, modified for vehicle detection. The input size was changed from 416 × 416 to
448 × 288 pixels and the number of filters in the last convolutional layer was reduced from 425 to 35.

Layer Filters Size Input Output
0 conv 32 3 × 3/1 448 × 288 × 3 448 × 288 × 32
1 max 2 × 2/2 448 × 288 × 32 224 × 144 × 32
2 conv 64 3 × 3/1 224 × 144 × 32 224 × 144 × 64
3 max 2 × 2/2 224 × 144 × 64 112 × 72 × 64
4 conv 128 3 × 3/1 112 × 72 × 64 112 × 72 × 128
5 conv 64 1 × 1/1 112 × 72 × 128 112 × 72 × 64
6 conv 128 3 × 3/1 112 × 72 × 64 112 × 72 × 128
7 max 2 × 2/2 112 × 72 × 128 56 × 36 × 128
8 conv 256 3 × 3/1 56 × 36 × 128 56 × 36 × 256
9 conv 128 1 × 1/1 56 × 36 × 256 56 × 36 × 128
10 conv 256 3 × 3/1 56 × 36 × 128 56 × 36 × 256
11 max 2 × 2/2 56 × 36 × 256 28 × 18 × 256
12 conv 512 3 × 3/1 28 × 18 × 256 28 × 18 × 512
13 conv 256 1 × 1/1 28 × 18 × 512 28 × 18 × 256
14 conv 512 3 × 3/1 28 × 18 × 256 28 × 18 × 512

Layer Filters Size Input Output
15 conv 256 1 × 1/1 28 × 18 × 512 28 × 18 × 256
16 conv 512 3 × 3/1 28 × 18 × 256 28 × 18 × 512
17 max 2 × 2/2 28 × 18 × 512 14 × 9 × 512
18 conv 1024 3 × 3/1 14 × 9 × 512 14 × 9 × 1024
19 conv 512 1 × 1/1 14 × 9 × 1024 14 × 9 × 512
20 conv 1024 3 × 3/1 14 × 9 × 512 14 × 9 × 1024
21 conv 512 1 × 1/1 14 × 9 × 1024 14 × 9 × 512
22 conv 1024 3 × 3/1 14 × 9 × 512 14 × 9 × 1024
23 conv 1024 3 × 3/1 14 × 9 × 1024 14 × 9 × 1024
24 conv 1024 3 × 3/1 14 × 9 × 1024 14 × 9 × 1024
25 route [16]
26 reorg /2 28 × 18 × 512 14 × 9 × 2048
27 route [26, 24]
28 conv 1024 3 × 3/1 14 × 9 × 3072 14 × 9 × 1024
29 conv 35 1 × 1/1 14 × 9 × 1024 14 × 9 × 35
30 detection

Silva and Jung [33] slightly modified their pipeline by directly applying their LP detector
(i.e., skipping the vehicle detection stage) when dealing with images in which the vehicles are
very close to the camera, as their vehicle detector failed in several of those cases. We believe this
is not the best way to handle the problem. Instead, as illustrated in Figure 4.6, we do not skip the
vehicle detection stage even when only a small part of the vehicle is visible. The entire image is

57

labeled as ground truth in cases where the vehicles are very close to the camera. Therefore, our
network also learns to select the ROI in those cases.

(a) (b)
Figure 4.6: Examples of images in which only part of the vehicle is visible. The ROI (i.e., the ground truth) used for
training our network is shown in green. Observe that detectors trained only on ‘entire’ vehicles would probably fail
in these cases. The images in (a) and (b) were taken from the ChineseLP [45] and AOLP [107] datasets, respectively.

We exploit some data augmentation strategies (flipping, rescaling and shearing) to train
our network. Thus, we prevent overfitting by creating several images with different characteristics
from a single labeled one. Figure 4.7 shows an image and five new samples created from it.

Figure 4.7: New training samples for vehicle detection created using data augmentation strategies. The upper-left
image is the original (taken from http://platesmania.com/) and the others were generated through rescaling,
shearing and horizontal flipping.

By default, YOLO only returns objects detected with a confidence of 0.25 or higher.
In the validation set, we evaluate several confidence thresholds to detect as many vehicles as
possible while maintaining a low FP rate. Furthermore, we apply an NMS algorithm to eliminate
redundant detections (those with IoU ≥ 0.25) since the same vehicle might be detected more than
once by the network. A negative recognition result is given in cases where no vehicle is found.

4.2.2 License Plate Detection and Layout Classification
In our previous work [30], we developed a real-time ALPR system that contains a character
recognition module in which letters and digits are recognized separately. Specifically, a network
is trained to recognize letters (26 classes) and another one to recognize digits (10 classes). In this
sense, errors in characters that are often misclassified (e.g., ‘B’ and ‘8’, ‘G’ and ‘6’, ‘I’ and ‘1’,

http://platesmania.com/

58

among others) are avoided. Although impressive results were achieved, that approach leverages
prior knowledge of Brazilian LPs (i.e., the position of letters and digits) and, therefore, cannot be
applied to LPs with other layouts. This drawback was mentioned in [33].

In order to develop a layout-independent ALPR system, we propose to detect the LP
and classify its layout simultaneously, given a vehicle patch. To this end, we fine-tune an object
detection network to predict one distinct class for each LP layout. In this way, we can employ
layout-specific approaches for LP recognition in cases where the LP and its layout are predicted
with a high confidence value. In other cases, a generic approach is applied. To the best of our
knowledge, this is the first time a layout classification stage is proposed to improve LP recognition.

In this work, we classify each LP layout into one of the following classes: American,
Brazilian, Chinese, European or Taiwanese. These classes were defined based on the public
datasets found in the literature [30, 32, 35, 45, 46, 108–110] and also because there are many
ALPR systems designed primarily for LPs of one of those regions [11, 35, 94]. It is worth noting
that (i) among LPs with different layouts (which may belong to the same class/region) there is a
wide variety in many factors, for example, in the aspect ratio, colors, symbols, position of the
characters, number of characters, among others; (ii) we consider LPs from different jurisdictions
in the United States as a single class; the same is done for LPs from European countries. LPs
from the same country or region may look quite different, but still share many characteristics in
common. Such common features can be exploited to improve LP recognition. In Figure 4.8, we
show examples of LPs of different layouts and classes.

(a) American (b) Chinese

(c) European (d) Taiwanese

Figure 4.8: Examples of LPs of different layouts and classes. Observe the wide variety in different ways (e.g., aspect
ratio, colors, symbols, position of the characters, number of characters, among others) on different LP layouts. The
images in (a) and (b) were taken from http://platesmania.com/, while the images in (c) and (d) are from
the EnglishLP [109] and AOLP [107] datasets, respectively. Examples of Brazilian LPs are shown in Figure 4.2.

Looking for an efficient ALPR system, in this stage we performed experiments with the
Fast-YOLOv2 and Fast-YOLOv3 models, which are focused on a speed/accuracy trade-off. In the
validation set, Fast-YOLOv2 obtained slightly better results than its successor (an F-measure
rate about 1% higher). This is due to the fact that YOLOv3 and Fast-YOLOv3 have relatively
high performance on small objects (which is not the case since we first detect the vehicles), but
comparatively worse performance on medium and larger size objects [37]. Accordingly, here we
employ the Fast-YOLOv2 model.

We made some changes to the Fast-YOLOv2 model to adapt it to our application and to
achieve even better results. First, we changed the kernel size of the next-to-last convolutional
layer from 3 × 3 to 1 × 1. Then, we added a 3 × 3 convolutional layer with twice the filters of that
layer. In this way, the network reached better results (F-measure ≈ 1% higher, from 97.97% to
99.00%) almost without increasing the number of FLOP required (i.e., 5.35→ 5.53 BFLOP), as
alternating 1 × 1 convolutional layers between 3 × 3 convolutions reduce the feature space from
preceding layers [29, 36, 63]. As in the vehicle detection stage, we recalculate the anchors for our

http://platesmania.com/

59

data and make adjustments to the number of filters in the last layer. The modified architecture is
shown in Table 4.3. We use the default input size of Fast-YOLOv2 (416 × 416 pixels), as it is
very similar to the average size of vehicles in the proposed dataset (421 × 408 pixels), which
contains different types of vehicles.

Table 4.3: Fast-YOLOv2 with some changes for LP detection and layout classification. First, the kernel size of
layer #13 was reduced from 3 × 3 to 1 × 1, and layer #14 was added. Then, the number of filters in layer #15 was
reduced from 425 to 50, as we use 5 anchor boxes to detect 5 classes (see Equation 4.1).

Layer Filters Size Input Output BFLOP
0 conv 16 3 × 3/1 416 × 416 × 3 416 × 416 × 16 0.150
1 max 2 × 2/2 416 × 416 × 16 208 × 208 × 16 0.003
2 conv 32 3 × 3/1 208 × 208 × 16 208 × 208 × 32 0.399
3 max 2 × 2/2 208 × 208 × 32 104 × 104 × 32 0.001
4 conv 64 3 × 3/1 104 × 104 × 32 104 × 104 × 64 0.399
5 max 2 × 2/2 104 × 104 × 64 52 × 52 × 64 0.001
6 conv 128 3 × 3/1 52 × 52 × 64 52 × 52 × 128 0.399
7 max 2 × 2/2 52 × 52 × 128 26 × 26 × 128 0.000
8 conv 256 3 × 3/1 26 × 26 × 128 26 × 26 × 256 0.399
9 max 2 × 2/2 26 × 26 × 256 13 × 13 × 256 0.000
10 conv 512 3 × 3/1 13 × 13 × 256 13 × 13 × 512 0.399
11 max 2 × 2/1 13 × 13 × 512 13 × 13 × 512 0.000
12 conv 1024 3 × 3/1 13 × 13 × 512 13 × 13 × 1024 1.595
13 conv 512 1 × 1/1 13 × 13 × 1024 13 × 13 × 512 0.177
14 conv 1024 3 × 3/1 13 × 13 × 512 13 × 13 × 1024 1.595
15 conv 50 1 × 1/1 13 × 13 × 1024 13 × 13 × 50 0.017
16 detection

In Table 4.3, we also list the number of FLOP required in each layer to highlight how
small the network is compared to others, e.g., YOLOv2 and YOLOv3. For this task, our network
requires 5.53 BFLOP while YOLOv2 and YOLOv3 require 29.35 and 66.32 BFLOP, respectively.
It is noteworthy that we only need to increase the number of filters in the last convolutional layer
(following Equation 4.1) so that the network can detect/classify additional LP layouts.

For LP detection and layout classification, we also use data augmentation strategies to
generate many other images from a single labeled one. As can be seen in Figure 4.9, given the
labeled bounding box of the vehicle, new training samples are created by adding some margin to
it and through rescaling and shearing. Horizontal flipping is not performed at this stage, as the
network leverages information such as the position of the characters and symbols on the LP to
predict its layout (besides the LP’s aspect ratio, colors, and other characteristics).

For testing, we also add a small margin to the vehicle patch (10% of its width/height) to
avoid losing LPs in cases where the vehicle is not very well detected, as illustrated in Figure 4.10b.
In addition, we attempted to avoid large distortions in images of motorcycles and larger vehicles
(e.g., trucks and buses) by enlarging the detected regions horizontally or vertically, so that each
vehicle patch has an aspect ratio (w/h) between 0.75 and 1.25 (see Figure 4.10c). However, this
impaired the performance of the network in preliminary experiments, as a lot of background
noise is added to the vehicle patch in that way (note that the training images were also enlarged in
this experiment). Therefore, we do not enlarge the vehicle patch after adding a small margin to it.

Only the detection with the highest confidence value is considered in cases where more
than one LP is predicted, as each vehicle has only one LP. Then, we classify as ‘undefined layout’
every LP that has its position and class predicted with a confidence value below 0.75, regardless
of which class the network predicted (note that such LPs are not rejected, instead, a generic
approach is used in the recognition stage). This threshold was chosen based on experiments
performed in the validation set, in which approximately 92% of the LPs were predicted with a

60

Figure 4.9: New training samples for LP detection and layout classification created using data augmentation. The
upper-left image uses the ideal bounding box of the vehicle and the others were generated by adding some margin to
it and through rescaling and shearing. The original image was taken from the EnglishLP dataset [109].

(a) Original (b) After adding a margin (c) After enlarging

Figure 4.10: A vehicle’s bounding box after adding a small margin to it (10% of the size of the bounding box) and
after enlarging it. In preliminary experiments, the results were better after (b) and worse after (c). In this way, we do
not enlarge the vehicle patch after adding a small margin to it. This image belongs to the UFPR-ALPR dataset.

confidence value above 0.75. In each of these cases, the LP layout was correctly classified. A
negative result is given in cases where no LP is predicted by the network.

It is worth noting that we could have trained two distinct networks for this stage: one for
cars and another one for motorcycles, as we detected these vehicles separately in the previous
stage. We believe that in this way it would be possible to attain even better results since each
network would focus on the detection of LPs in one type of vehicle, for example, motorcycle
LPs generally have similar width and height, unlike car ones. Besides, it would be possible to
employ a network with a different (and smaller) input size to detect LPs in motorcycles, which
have different aspect ratio from other vehicles. This approach was not carried out due to the lack
of fully annotated public datasets with motorcycle images and different LP layouts.

4.2.3 License Plate Recognition
Once the LP has been detected and its layout classified, we employ the CNN proposed by Silva
and Jung [11], called CR-NET, for LP recognition. CR-NET is a YOLO-based model that
consists of the first eleven layers of YOLO and four other convolutional layers added to improve

61

nonlinearity. This model was chosen for two main reasons. First, it was capable of detecting
and recognizing LP characters at 448 FPS in [11]. Second, very recently, it yielded the best
recognition results in the context of image-based automatic meter reading [72], outperforming
two segmentation-free approaches based on deep learning [13, 111].

The CR-NET architecture is shown in Table 4.4. We changed its input size, which was
originally defined based on the LPs of the SSIG-SegPlate dataset, from 240×80 to 352×128 pixels
taking into account the average aspect ratio of the LPs in the datasets used in our experiments
(described in Section 5.1), in addition to results obtained in the validation set, where several
input sizes were evaluated (e.g., 256 × 96 and 384 × 128 pixels). As the same model is employed
to recognize LPs of various layouts, we enlarge all LP patches (in both the training and testing
phases) so that they have aspect ratios (w/h) between 2.5 and 3.0, as shown in Figure 4.11,
considering that the input image has an aspect ratio of 2.75 (352 × 128 pixels). The network is
trained to predict 35 classes (0-9, A-Z, where the letter ‘O’ is detected/recognized jointly with
the digit ‘0’) using the LP patch as well as the class and coordinates of each character as inputs.

Table 4.4: The CR-NET model, proposed in [11]. We increased the input size from 240 × 80 to 352 × 128 pixels.
The number of filters in the last convolutional layer (#14) was defined following Equation 4.1 (using A = 5).

Layer Filters Size Input Output BFLOP
0 conv 32 3 × 3/1 352 × 128 × 3 352 × 128 × 32 0.078
1 max 2 × 2/2 352 × 128 × 32 176 × 64 × 32 0.001
2 conv 64 3 × 3/1 176 × 64 × 32 176 × 64 × 64 0.415
3 max 2 × 2/2 176 × 64 × 64 88 × 32 × 64 0.001
4 conv 128 3 × 3/1 88 × 32 × 64 88 × 32 × 128 0.415
5 conv 64 1 × 1/1 88 × 32 × 128 88 × 32 × 64 0.046
6 conv 128 3 × 3/1 88 × 32 × 64 88 × 32 × 128 0.415
7 max 2 × 2/2 88 × 32 × 128 44 × 16 × 128 0.000
8 conv 256 3 × 3/1 44 × 16 × 128 44 × 16 × 256 0.415
9 conv 128 1 × 1/1 44 × 16 × 256 44 × 16 × 128 0.046
10 conv 256 3 × 3/1 44 × 16 × 128 44 × 16 × 256 0.415
11 conv 512 3 × 3/1 44 × 16 × 256 44 × 16 × 512 1.661
12 conv 256 1 × 1/1 44 × 16 × 512 44 × 16 × 256 0.185
13 conv 512 3 × 3/1 44 × 16 × 256 44 × 16 × 512 1.661
14 conv 200 1 × 1/1 44 × 16 × 512 44 × 16 × 200 0.144
15 detection

(a) Vertical Enlargement (b) Horizontal Enlargement

Figure 4.11: Two illustrations of enlargement of the LPs detected in the previous stage. In this way, a single network
is trained to recognize LPs of different layouts, regardless of their aspect ratios. The LP patches in (a) and (b) were
taken from the EnglishLP [109] and UFPR-ALPR datasets, respectively.

It is worth noting that the first character in Chinese LPs (see Figure 4.8b) is a Chinese
character that represents the province in which the vehicle is affiliated [94, 112]. Following [17],
our network was not trained/designed to recognize Chinese characters, even though Chinese LPs
are used in the experiments. In other words, only digits and English letters are considered. The
reason is threefold: (i) there are less than 400 images in the ChineseLP dataset [45] (only some
of them are used for training), which is employed in the experiments, and some provinces are
not represented; (ii) labeling the class of Chinese characters is not a trivial task for non-Chinese

62

people (we manually labeled the position and class of the LP characters in the ChineseLP dataset);
and (iii) to fairly compare our system with others trained only on digits and English letters.
Remark that in the ALPR literature the approaches capable of recognizing Chinese characters,
digits and English letters were evaluated, for the most part, on datasets containing only Chinese
LPs [25, 94, 112, 113].

As the LP layout is classified in the previous stage, we employ some heuristic rules to
adapt the results produced by CR-NET according to the predicted class. Based on the datasets
employed in this work, we defined the minimum and the maximum number of characters to be
considered in LPs of each layout (see Table 4.5). Brazilian and Chinese LPs have a fixed number
of characters, while American, European and Taiwanese LPs do not. Initially, we consider all
characters predicted with a confidence value above a predefined threshold. Afterward, as in the
vehicle detection stage, an NMS algorithm is applied to remove redundant detections (i.e., those
with IoU ≥ 0.25). Finally, if necessary, we discard the characters predicted with lower confidence
values or consider others previously discarded (i.e., ignoring the confidence threshold) so that the
number of characters considered is within the range defined for the predicted class. We consider
that the LP has between 4 and 8 characters in cases where its layout was classified with a low
confidence value (i.e., undefined layout).

Table 4.5: The minimum and maximum number of characters to be considered in LPs of each layout.

LP Layout # Characters
Min. Max.

American 4 7
Brazilian 7 7
Chinese 6 6
European 5 8
Taiwanese 5 6

Additionally, we swap digits and letters on Brazilian and Chinese LPs, as there are
fixed positions for digits or letters in those layouts. In Brazilian LPs, the first three characters
correspond to letters and the last four to digits; while in Chinese LPs the second character is a
letter that represents a city in the province in which the vehicle is affiliated. This swap approach,
inspired by [11], is not employed for LPs of other layouts since each character position can be
occupied by either a letter or a digit in American, European and Taiwanese LPs. The specific
swaps are given by [1⇒ I; 2⇒ Z; 4⇒ A; 5⇒ S; 6⇒ G; 7⇒ Z; 8⇒ B] and [A⇒ 4; B⇒ 8;
D⇒ 0; G⇒ 6; I⇒ 1; J⇒ 1; Q⇒ 0; S⇒ 5; Z⇒ 7]. In this way, we avoid errors in characters
that are often misclassified.

The LP characters might also be arranged in two rows instead of one. We distinguish
such cases based on the predictions of the vehicle type, LP layout, and character coordinates. In
our experiments, only two datasets have LPs with the characters arranged in two rows. These
datasets were captured in Brazil and Croatia. In Brazil, car and motorcycle LPs have the characters
arranged in one and two rows, respectively. Thus, we look at the predicted class in the vehicle
detection stage in those cases. In Croatia, on the other hand, cars might also have LPs with two
rows of characters. Therefore, for European LPs, we consider that the characters are arranged
in two rows in cases where the bounding boxes of half or more of the predicted characters are
located entirely below another character. In our tests, this simple rule was sufficient to distinguish
LPs with one and two rows of characters even in cases where the LP is considerably inclined.

In addition to using the original LP images, we employ various data augmentation
techniques to train the CR-NET model and improve its robustness. First, we double the number

63

of training samples by creating a negative image of each LP, as we noticed that in some cases
negative LPs are very similar to LPs of other layouts. This is illustrated with Brazilian and
American LPs in Figure 4.12. We also generate many other images by randomly rescaling the
LP patch and adding a margin to it, simulating more or less accurate detections of the LP in the
previous stage.

(a) Gray LP→ Red LP (Brazilian) (b) Red LP→ Gray LP (Brazilian)

(c) Black LP→White LP (American) (d) White LP→ Black LP (American)

Figure 4.12: Examples of negative images created to simulate LPs of other layouts. (a) and (b) show Brazilian LPs,
while American ones are shown in (c) and (d). In Brazil, private vehicles have gray LPs, while buses, taxis and other
transportation vehicles have red LPs. In the United States, old California LPs featured gold characters on a black
background. Currently, they have blue characters on a white background.

The datasets for ALPR are generally very unbalanced in terms of character classes
due to LP allocation policies. In Brazil, for example, one letter can appear much more often
than others according to the state in which the LP was issued [30, 32]. It is well-known that
unbalanced data is undesirable for neural network classifiers since the learning of some patterns
might be biased. To address this issue, we employ the data augmentation technique proposed
in [13], which consists of permuting on the LPs the characters overrepresented in the training set
by those underrepresented. Using this technique, we are able to create a balanced set of images
in which the order and frequency of the characters on the LPs are chosen to uniformly distribute
them along the positions, maintaining the initial arrangement of letters and digits of each LP. In
this way, the network might also learn the positions of letters and digits in certain LP layouts. It
should be noted that the coordinates of each character (i.e., its bounding box) are necessary to
apply this data augmentation technique.

Figure 4.13 shows some artificially generated images when applying the aforementioned
method to LPs of different layouts. Following [13, 72], we also perform random variations of
brightness, rotation and cropping to increase even more the diversity of the generated images.

As mentioned in [72], the adjustment of parameters is of paramount importance for the
effectiveness of this technique since the presence of very large variations in brightness, rotation
or cropping, for example, might impair the recognition through the generation of images that
do not match real scenarios. Therefore, we empirically adjusted the parameters through visual
inspection, i.e., brightness variation of the pixels [0.85; 1.15], rotation angles between −5° and 5°
and cropping from −2% to 8% of the LP size. Once these ranges were established, new images
were generated using random values within those ranges for each parameter.

Remark that it would be possible to design/train a specific network for LPs of each
country or region, as a large number of images (i.e., hundreds of thousands, or millions) can be
generated using data augmentation strategies. However, a lot of manual effort would be required
since the model and its parameters would have to be adjusted separately for each layout class. For
example, a network fine-tuned to recognize Taiwanese LPs would probably have a different input
size from a network designed for European LPs, as the aspect ratios of the LPs issued in those
regions are generally quite different. As another example, shallower models could be employed
specifically for LPs with simpler backgrounds (e.g., Brazilian and Chinese LPs).

64

Figure 4.13: Examples of LP images generated using the data augmentation technique proposed in [13]. The images
in the first row are the originals and the others were generated automatically. In the columns, LPs of different layouts
are shown. From left to right: American, Chinese and European LPs.

65

5 Experimental Results

In this chapter, we report the experiments carried out to verify the effectiveness of the proposed
ALPR system. First, we present the datasets and evaluation protocol used in our experiments.
Afterward, the results achieved (in terms of both accuracy and execution time) are reported and
compared with those obtained in previous works and by commercial systems. All experiments
were performed on a computer with an AMD Ryzen Threadripper 1920X 3.5GHz CPU, 32 GB
of RAM and an NVIDIA Titan Xp GPU (3,840 CUDA cores and 12 GB of RAM).

The Darknet framework [69] was employed to train and test our networks. However, we
used the AlexeyAB’s version of Darknet [106], which has several improvements over the original1,
including improved neural network performance by merging two layers into one (convolutional
and batch normalization), optimized memory allocation during network resizing, and many other
code fixes. For more details on this repository, refer to [106].

We also made use of the Darknet’s built-in data augmentation, which creates a number
of randomly cropped and resized images with changed colors (hue, saturation, and exposure).
We manually implemented the flip operation only for the vehicle detection stage, as this operation
would probably impair the layout classification and LP recognition tasks. Similarly, we disabled
the color-related data augmentation for the LP detection and layout classification stage, as
explained in Section 5.3.2.

All image resizing operations were performed using bilinear interpolation, which is
implemented in the Darknet framework and used by default in the OpenCV library [114].

5.1 Datasets
In addition to theUFPR-ALPRdataset, the experiments were carried out in seven publicly available
datasets: Caltech Cars, EnglishLP, UCSD (Stills subset), ChineseLP, AOLP, OpenALPR-EU and
SSIG-SegPlate. These datasets are often used to evaluate ALPR systems, contain multiple LP
layouts and were collected under different conditions/scenarios (e.g., with variations in lighting,
camera position and settings, and vehicle types). In the following subsections, these datasets are
presented and briefly described in chronological order. An overview of the datasets (including
the proposed one) is presented in Table 5.1. It is noteworthy that in most of the works in the
literature no more than three datasets were used in the experiments.

In our experiments, we did not make use of two datasets proposed recently: AOLPE [40]
(an extension of the AOLP dataset) and Chinese City Parking Dataset (CCPD) [117]. The former
has not yet been made available by the authors, who are collecting more data to make it even
more challenging. The latter, although already available, does not provide the position of the
vehicles and the characters in its 250,000 images and it would be impractical to label them to
train/evaluate our networks (in [117], more than 100,000 images were used for training).

1The AlexeyAB’s GitHub repository is forked from https://github.com/pjreddie/darknet.

https://github.com/pjreddie/darknet

66

Table 5.1: An overview of the datasets used in our experiments.

Dataset Year # Images Resolution LP Layout Evaluation
Protocol

Caltech Cars [108] 1999 126 896 × 592 American No
EnglishLP [109] 2003 509 640 × 480 European No

UCSD-Stills [110, 115] 2005 291 640 × 480 American Yes
ChineseLP [45] 2012 411 Various Chinese No
AOLP [35,107] 2013 2,049 Various Taiwanese No

OpenALPR-EU [46] 2016 108 Various European No
SSIG-SegPlate [32, 116] 2016 2,000 1,920 × 1,080 Brazilian Yes

UFPR-ALPR 2018 4,500 1,920 × 1,080 Brazilian Yes

5.1.1 Caltech Cars
The Caltech Cars dataset [108] was recorded in 1999 by Markus Weber during his doctorate at
the California Institute of Technology. The dataset is composed of 126 rear-view images taken in
parking lots with a resolution of 896× 592 pixels. All images have only one car in the foreground
and were captured during the daytime with the same hand-held camera at approximately the same
distance. Figure 5.1 shows some images belonging to this dataset. There are no motorcycles and
larger vehicles such as buses and trucks.

Figure 5.1: Some sample images of the Caltech Cars dataset [108]. Despite the fact that there are LPs of different
layouts in this dataset, most vehicles have California-issued LPs.

Although it has been widely used in the ALPR context [14,27,45,118,119], the Caltech
Cars dataset was created to validate object recognition algorithms and has no annotations.
Therefore, it is necessary to manually label the LP position and characters in order to evaluate
ALPR algorithms. As this dataset also does not have an evaluation protocol, other datasets were
employed to train the proposed algorithms in some works [14,45,118], whereas in others the 126
images were randomly split into training and test sets. In [119–121], for example, 80 images
were used for training and 46 for testing.

67

5.1.2 EnglishLP
In 2003, Vlasta Srebrić created the EnglishLP dataset [109] to evaluate procedures for improving
the contrast of grayscale images [122]. Even though no particular name was given to the dataset,
it is commonly referred to as EnglishLP dataset because it has only characters of the English
alphabet [22,87,88]. This dataset, collected in Croatia, consists of 509 images (640× 480 pixels)
acquired using a hand-held camera under different weather conditions (sunny, cloudy, rainy) at
different times of the day (morning, afternoon, evening, night). The images are divided into
six folders, one for each day the images were collected. As can be seen in Figure 5.2, there are
several LP layouts and different types of vehicles such as cars, buses and trucks (one vehicle per
image). Nevertheless, there are no motorcycles.

Figure 5.2: Some examples from the EnglishLP dataset [109]. All images are from the rear of the vehicle.

The EnglishLP dataset has neither annotations nor evaluation protocol. As expected,
different protocols were employed in previous works to evaluate their approaches. For example,
about 80% of the images were used for training and the remainder for testing in [87]. In [18, 22],
on the other hand, the dataset was combined with others to create larger training and test sets.
Examples of ALPR works using this dataset are [18, 22, 87, 88, 123].

5.1.3 UCSD-Stills
The UCSD dataset [110] was introduced in 2005 by Louka Dlagnekov as part of his master’s
thesis at the University of California, San Diego [115]. This dataset was created to assist the
development and evaluation of algorithms for LP, make and model recognition.

The dataset, which is available by request, is divided into three subsets: Gilman, Regents
and Stills. The first two subsets were captured by cameras mounted on top of street lamp poles
overlooking stop signs. The Stills subset, on the other hand, contains images taken with a
hand-held camera in various parking lots at a closer distance. As the LPs are not legible in the
Gilman and Regents subsets, only the 291 images from the Stills subset, hereinafter referred to as
UCSD-Stills dataset, are used in this work. Some sample images are shown in Figure 5.3.

All images of the UCSD-Stills dataset were taken during the daytime with a resolution
of 640 × 480 pixels. The images are from passenger cars only, i.e., there are no motorcycles nor
larger vehicles such as buses and trucks. As in the Caltech Cars dataset, there are LPs of different
layouts in this dataset, however, most vehicles have LPs issued in California, United States.

The UCSD-Stills dataset is divided into a training set (186 images) and a test set (60 im-
ages). Thus, there are 45 images that are not related to any subset. We assume that these images

68

Figure 5.3: Sample images of the UCSD-Stills dataset [110]. There are images captured from the front view and
others from the rear view of the vehicles. In addition, there might be vehicles in the background (see the middle
image on the bottom row), however, only the position of the LP in the foreground is labeled in each image.

are intended to be used for validation. Regarding the annotations, the position (x,y,w,h) of the
LP (the one in the foreground) was labeled in each image. To the best of our knowledge, this was
the first dataset to provide annotations on the positions of the LPs. Examples of works that used
this dataset are [41, 118, 124]. Further information can be seen in [110,115].

5.1.4 ChineseLP
Zhou et al. [45] built a dataset containing 411 vehicle images (mostly of passenger cars) with
Chinese LPs to evaluate their LP detection approach based on principal visual word discovery.
The dataset, hereinafter referred to as ChineseLP, was created in 2012 and is available by request.

The ChineseLP dataset consists of 252 images captured by the authors and 159 images
downloaded from the internet. In this way, the images present great variations in resolution (from
143× 107 to 2048× 1536 pixels), illumination and background. This dataset was acquired mostly
by hand-held cameras, although cameras mounted on the dashboards of vehicles were also used
in some cases. As shown in Figure 5.4, the images were taken during the daytime, from both
front and rear views, multiple vehicles might exist in one image, and there are no motorcycles.

Despite the fact that the dataset has no evaluation protocol or annotations, it has
been employed (commonly jointly with other datasets) to train and also to evaluate ALPR
algorithms [14, 24, 125, 126]. One can refer to [45] for more information regarding this dataset.

5.1.5 AOLP
Hsu et al. [35] collected the Application-Oriented License Plate (AOLP) dataset [107] to verify
the proposition that ALPR is better handled in an application-oriented way. This dataset, created
in 2013, is categorized into three subsets: Access Control (AC), traffic Law Enforcement (LE),
and Road Patrol (RP). The AC subset (681 images) refers to cases in which a vehicle traverses in
a fixed passage at a reduced speed or with a full stop, such as at a toll station or the entrance/exit
of private spaces. The LE subset (757 images) makes reference to situations in which a vehicle
violates traffic laws and is captured by a roadside camera. Finally, the RP subset (611 images)

69

Figure 5.4: Example images from the ChineseLP dataset [45]. The images from the first row were captured by the
authors, while the images from the second row were downloaded from the internet.

refers to cases in which the camera is installed on a patrol car, which takes images of vehicles
with arbitrary viewpoints and distances [35]. Figure 5.5 shows sample images from each subset.

Figure 5.5: Sample images from each subset of the AOLP dataset [35]. The first row shows images of the AC subset,
while the second and third rows show images of the LE and RP subsets, respectively.

70

All 2,049 images were collected in Taiwan, from front/rear views and various locations,
time, traffic, and weather conditions. The images have a resolution between 320 × 240 and
640 × 480 pixels. To the best of our knowledge, this dataset was the first to contain annotations
regarding the LP position and also its text, assisting the development and evaluation of new ALPR
approaches. Note that, in some cases, there is more than one vehicle in the image. Furthermore,
LPs of motorcycles are not labeled, even when they are in the foreground.

The AOLP dataset does not have a well-defined evaluation protocol. Therefore, the
dataset was divided in several ways in previous works. In [35, 118], for example, 387 images
were randomly chosen for training and 1,662 for testing. Alternatively, Xie et al. [41] randomly
divided the data into training and test sets with a 2:1 ratio, whereas Li et al. [17] used images
from different subsets for training and testing, for example, they used images from the LE and
RP subsets to train their network, and evaluated it on the AC subset. These two protocols were
employed by Zhuang et al. [95] to assess their approach. Other authors [14, 92, 127] chose to
train their methods on images from other public datasets and evaluate them on all images of the
AOLP dataset.

A license agreement is required for downloading the dataset, and more details can be
found in [35, 107].

5.1.6 OpenALPR-EU
OpenALPR [102] is an ALPR library written in C++ with bindings in other languages, such
as C#, Java and Python, that is distributed in both commercial and open source versions. In 2016,
Matthew Hill (i.e., the founder of OpenALPR) provided a public dataset containing 108 images
of vehicles with European LPs, hereinafter referred to as OpenALPR-EU [46], to support the
development of the open source version. Some images are shown in Figure 5.6.

Figure 5.6: Some images from the OpenALPR-EU dataset [46]. In general, the vehicle occupies a large portion of
the image and is well centered. Although in some cases there are legible LPs of other vehicles in the background
(e.g., the bottom right image), only the position and text of the LP in the foreground are labeled in this dataset.

The images, which have a resolution from 326 × 249 to 2048 × 1536 pixels, were
acquired during the daytime, predominantly by hand-held cameras, from the front and rear views

71

of the vehicles. There are vehicles, mostly passenger ones, with LPs issued in several European
countries such as Slovakia, Germany, Czech Republic, Norway, among others. Remark that the
vehicles are well centered and there are no motorcycles in this dataset.

As ground truth, the position and text of the LP were manually labeled in each image.
Although in some cases there are legible LPs of other vehicles in the background, only information
regarding the LP in the foreground are provided. Considering that the OpenALPR-EU dataset
contains only 108 images and has no evaluation protocol, all its images were used for testing
in [18, 33], while other datasets were employed for training and validation.

5.1.7 SSIG-SegPlate
In 2016, Gonçalves et al. [32] pointed out that existing ALPR datasets did not provide annotations
referring to the bounding boxes of the LP characters, which are essential to evaluate character
segmentation techniques. Therefore, they proposed a benchmark for LP character segmentation,
including an evaluation measure that is more suitable for this problem, and the SSIG-SegPlate
dataset [116]. To the best of our knowledge, this is the first public dataset for ALPR to provide
manual annotations on the position of both the LPs and the characters, as well as the character
classes. This is quite important since it allows a quantitative evaluation of both character
segmentation and recognition methods.

The SSIG-SegPlate dataset consists of 2,000 high-resolution frames (1,920 × 1,080)
from 101 vehicles (passenger cars, buses and trucks; there are no motorcycles) taken with a static
camera. There are several frames of each vehicle (19.80, on average). In this way, redundant
information may be used to improve the recognition results [32]. All images were captured from
the front view of the vehicles during the daytime on a campus of the Federal University of Minas
Gerais, Brazil. Three sample frames are shown in Figure 5.7. In some cases, there are more than
one vehicle/LP visible in the foreground, however, only one LP was labeled in each image.

Figure 5.7: Sample frames of the SSIG-SegPlate dataset [32]. It should be noted that only one LP is labeled in each
frame, that is, there are vehicles/LPs in the background (even in the foreground) that do not have annotations.

The SSIG-SegPlate dataset is divided into several folders (each folder has images of
only one vehicle) and uses the following evaluation protocol: 40% of the images for training,
20% for validation and 40% for testing. According to the authors, this protocol was adopted
because many character segmentation approaches do not require model estimation and a larger
test set allows the reported results to be more statistically significant [32].

A license agreement is needed for downloading the SSIG-SegPlate dataset, and further
information can be seen in [32, 116]. This dataset was employed for ALPR in [11, 13, 30, 33].

5.1.8 Discussion
As the datasets employed in this work were proposed over the last 20 years by different research
groups from different countries, the datasets present a great variety in the way they were collected.
Thus, the proposed system is evaluated in images with unique characteristics, which simulate

72

distinct real-world scenarios and applications. It should be noted that only public datasets were
used for both training and testing our approach to enable fair comparisons in future works.

Most datasets have no annotations or contain labels for a single stage only (e.g.,
LP detection), despite the fact that they are often used to train/evaluate algorithms in the ALPR
context. Therefore, in all images of these datasets, we manually labeled the position of the
vehicles (including those in the background where the LP is also legible), LPs and characters, as
well as their classes2. In the AOLP dataset, unlike the others, the exact region containing the
characters was originally labeled as the position of the LP, without any margin and not including
the LP frame. Due to that, we discard those labels and annotated the positions of the LPs in that
dataset to avoid inconsistency among the labels of different datasets.

In addition to using the training images of the datasets presented in this section, we
downloaded and labeled more 772 images from the internet to train all stages of our ALPR system.
This procedure was adopted to eliminate biases from the datasets employed in our experiments.
For example, the datasets collected in the United States (i.e., Caltech Cars and UCSD-Stills) have
similar characteristics (e.g., there is one vehicle per image, the vehicle is centered and occupies a
large portion of the image, and the resolutions of the images are not high), which are different
from those of the other datasets. Moreover, there are many more examples of Brazilian and
Taiwanese LPs in our training data (note that the exact number of images used for training, testing
and validation in each dataset is detailed in the next section). Therefore, we downloaded images
containing vehicles with American, Chinese and European LPs so that there are at least 500
images of LPs of each class/region to train our networks. Specifically, we downloaded 257, 341,
and 174 images containing American, Chinese and European LPs, respectively3.

It is important to emphasize that these additional images are essential for the robustness
of the proposed ALPR system, as many of them were acquired under conditions different from
those generally found in public datasets such as rainy or snowy days, as well as images captured
at night. In Figure 5.8, some examples are shown.

5.2 Evaluation Protocol
To evaluate the stages of (i) vehicle detection and (ii) LP detection and layout classification, we
report the precision and recall rates (described in Section 2.1) achieved by our networks. Each
metric has its importance since, for system efficiency, all vehicles/LPs must be detected without
many false positives. Note that the precision and recall rates are equal in the LP detection and
layout classification stage because we consider only one LP per vehicle.

We consider as correct only the detections with IoU greater than 0.5 with the ground
truth. This bounding box evaluation, defined in the PASCAL VOC Challenge [38] and employed
in previous works [11, 17, 27], is interesting since it penalizes both over- and under-estimated
objects. In the LP detection and layout classification stage, we assess only the predicted bounding
box on LPs classified as undefined layout (see Section 4.2.2). In other words, we consider as
correct the predictions when the LP position is correctly predicted but not its layout, as long as
the LP (and its layout) has not been predicted with a high confidence value (i.e., below 0.75).

In the LP recognition stage, we report the number of correctly recognized LPs divided
by the total number of LPs in the test set. A correctly recognized LP means that all characters on

2All annotations made by us are publicly available to the research community at https://web.inf.ufpr.
br/vri/publications/layout-independent-alpr/.

3The images were downloaded from www.platesmania.com. Their download links and annotations are
also publicly available at https://web.inf.ufpr.br/vri/publications/layout-independent-
alpr/.

https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/
https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/
www.platesmania.com
https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/
https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/

73

Figure 5.8: Examples of images downloaded from www.platesmania.com that were used to train our system.
Some of them were acquired under conditions different from those generally found in public datasets such as rainy
or snowy days, as well as images captured at night. In this way, we prevent overfitting in certain scenarios.

the LP were correctly recognized. As pointed out by Gonçalves et al. [10], OCR approaches must
work as close as possible to the optimality in the ALPR context, as a single character recognized
incorrectly may imply in incorrect identification of the vehicle.

As detailed in the previous section, only three of the eight datasets used in this work
contain an evaluation protocol (defined by the respective authors) that can be reproduced
perfectly: UCSD-Stills, SSIG-SegPlate and UFPR-ALPR. Thus, we split their images into
training, validation, and test sets according to their own protocols (described in Section 4.1
and Section 5.1). We randomly divided the other five datasets using the protocols employed in
previous works, aiming at a fair comparison with them. In the next paragraph, such protocols
(which we also provide for reproducibility purposes) are specified.

We used 80 images of the Caltech Cars dataset for training and 46 for testing, as
in [119–121]. Then, we employed 16 of the 80 training images for validation (i.e., 20%). The
EnglishLP dataset was divided in the same way as in [87], with 80% of the images being used
for training and the remainder for testing. Also in this dataset, 20% of the training images were
employed for validation. Regarding the ChineseLP dataset, we did not find any previous work in
which it was split into training/test sets, that is, all its images were used either to train or to test
the methods proposed in [14,24, 125,126], often jointly with other datasets. Thus, we adopted
the same protocol of the SSIG-SegPlate and UFPR-ALPR datasets, in which 40% of the images
are used for training, 40% for testing and 20% for validation. As pointed out in the previous
section, the AOLP dataset has been divided in several ways in the literature. In this work, we
randomly divided each subset of the AOLP dataset into training and test sets with a 2:1 ratio,
following [41,95]. Then, 20% of the training images were employed for validation. Lastly, all
images belonging to the OpenALPR-EU dataset were used for testing in [18, 33], while other
public or private datasets were employed for training. Therefore, we also did not use any image
of this dataset for training or validation, only for testing. An overview of the number of images
used for training, testing and validation in each dataset can be seen in Table 5.2.

www.platesmania.com

74

Table 5.2: An overview of the number of images used for training, testing and validation in each dataset.

Dataset Training Validation Testing Discarded Total
Caltech Cars [108] 62 16 46 2 126
EnglishLP [109] 326 81 102 0 509

UCSD-Stills [110, 115] 181 39 60 11 291
ChineseLP [45] 159 79 159 14 411
AOLP [35,107] 1,093 273 683 0 2,049

OpenALPR-EU [46] 0 0 108 0 108
SSIG-SegPlate [32, 116] 789 407 804 0 2,000

UFPR-ALPR 1,800 900 1,800 0 4,500

Wediscarded a few images from the Caltech Cars, UCSD-Stills, and ChineseLP datasets4.
Despite the fact that most images in these datasets are reasonable, there are a few exceptions
where (i) it is impossible to recognize the vehicle’s LP due to occlusion, lighting or image
acquisition problems, among other factors; (ii) the image does not represent real ALPR scenarios,
for example, a person holding an LP. Three examples are shown in Figure 5.9. Such images were
also discarded in [18].

Figure 5.9: Examples of images discarded in our experiments.

It is worth noting that we did not discard any image from the test set of the UCSD-Stills
dataset and used the same number of test images in the Caltech Cars dataset. In this way, we can
fairly compare our results with those obtained in previous works. In fact, we used fewer images
from those datasets to train and validate our networks. In the ChineseLP dataset, on the other
hand, we first discard the few images with problems and then split the remaining ones using
the same protocol as the SSIG-SegPlate and UFPR-ALPR datasets (i.e., 40/20/40% for training,
validation and testing, respectively) since, in the literature, a division protocol has not yet been
proposed for the ChineseLP dataset, to the best of our knowledge.

To avoid an overestimation or bias in the random division of the images into the
training, validation and test subsets, we report in each stage the average result of five runs of
the proposed approach. Therefore, at each run, the images of the datasets that do not have an
evaluation protocol were randomly redistributed into each subset (training/validation/test). In the
UCSD-Stills, SSIG-SegPlate and UFPR-ALPR datasets, we employed the same division (i.e., the
one proposed along with the respective dataset) in all runs.

As pointed out in Section 5.1.8, wemanually labeled the vehicles (including motorcycles)
in the background of the images in cases where their LPs are legible. Nevertheless, in the testing

4The list of all images not used in our experiments can be found at https://web.inf.ufpr.br/vri/
publications/layout-independent-alpr/.

https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/
https://web.inf.ufpr.br/vri/publications/layout-independent-alpr/

75

phase, we considered only the vehicles/LPs originally labeled in the datasets that have annotations
(e.g., AOLP and SSIG-SegPlate) to perform a fair comparison with previous works.

5.3 Results
In this section, we first assess the detection stages separately since the regions used in the LP
recognition stage are from the detection results, rather than cropped directly from the ground truth.
This is done to provide a realistic evaluation of the entire ALPR system, in which well-performed
vehicle and LP detections are essential for achieving outstanding recognition results.

Afterward, the entire ALPR system is evaluated and the results are compared with those
obtained in previous works and by commercial systems.

5.3.1 Vehicle Detection
In this stage, we employed a confidence threshold of 0.25 (defined empirically) to detect as many
vehicles as possible, while avoiding high FP rates and, consequently, a higher cost of the proposed
ALPR system. The following parameters were used for training the network: 60K iterations (max
batches) and learning rate = [10-3, 10-4, 10-5] with steps at 48K and 54K iterations.

The vehicle detection results are presented in Table 5.3. According to the detection
evaluation described in Section 5.2, in the average of five runs, our approach achieved a recall
rate of 99.92% and a precision rate of 98.37%. It is remarkable that the YOLOv2 model was able
to correctly detect all vehicles (i.e., recall = 100%) in 5 of the 8 datasets used in the experiments.
Some detection results are shown in Figure 5.10. As can be seen, well-located predictions were
attained on vehicles of different types and under different conditions.

Table 5.3: Vehicle detection results achieved by the YOLOv2 model in all datasets.

Dataset Precision (%) Recall (%)
Caltech Cars 100.00 ± 0.00 100.00 ± 0.00
EnglishLP 99.04 ± 0.96 100.00 ± 0.00
UCSD-Stills 97.42 ± 1.40 100.00 ± 0.00
ChineseLP 99.26 ± 1.00 99.50 ± 0.52
AOLP 96.92 ± 0.37 99.91 ± 0.08

OpenALPR-EU 99.27 ± 0.76 100.00 ± 0.00
SSIG-SegPlate 95.47 ± 0.62 99.98 ± 0.06
UFPR-ALPR 99.57 ± 0.07 100.00 ± 0.00

Average 98.37 ± 0.65 99.92 ± 0.08

To the best of our knowledge, with the exception of our previous work [30], there is no
other work in the ALPR context where both cars and motorcycles are detected at this stage. This
is of paramount importance since motorcycles are one of the most popular transportation means
in metropolitan areas, especially in Asia [103]. Although motorcycle LPs may be correctly
located by LP detection approaches that work directly on the frames, they can be detected with
fewer false positives if the motorcycles are detected first [9].

The precision rates obtained by the network were only not higher due to unlabeled
vehicles present in the background of the images, especially in the AOLP and SSIG-SegPlate
datasets. Three examples are shown in Figure 5.11a. In fact, one of the reasons we did not train

76

Figure 5.10: Some detection results achieved by the YOLOv2 model in different datasets. For better viewing,
motorcycles’ bounding boxes were drawn in blue, while the bounding boxes of other vehicles were drawn in green.
Observe that vehicles of different types (cars, motorcycles, buses and trucks) were correctly detected regardless of
lighting conditions (daytime and nighttime), occlusion, camera distance, and other factors.

our vehicle detector using the large-scale CompCars dataset [128] is that many vehicles in the
background (including those in which the LP is not visible/legible) would also be detected.

In Figure 5.11b, we show some of the few cases where our network failed to detect one
or more vehicles in the image. As can be seen, such cases are challenging since only a small part
of each undetected vehicle is visible. It is worth mentioning that in situations where a vehicle is
detected with IoU ≤ 0.5 with the ground truth, it is still possible to detect its LP in the next stage
since the LP may be within the ROI after adding a margin to it, as explained in Section 4.2.2.

5.3.2 License Plate Detection and Layout Classification
In Table 5.4, we report the results obtained by the modified Fast-YOLOv2 network in the LP
detection and layout classification stage. As we consider only one LP per vehicle image, the
precision and recall rates are identical. The average recall rate obtained in all datasets was 99.51%
when disregarding the vehicles not detected in the previous stage and 99.45% when considering
the entire test set. This result is particularly impressive since we considered as incorrect the
predictions in which the LP layout was incorrectly classified with a high confidence value, even
in cases where the LP position was predicted correctly (as explained in Section 5.2).

According to Figure 5.12, the proposed approach was able to successfully detect and
classify LPs of various layouts, including those with few examples in the training set such as LPs
issued in the U.S. states of Connecticut and Utah, or LPs of motorcycles in Taiwan. It should
be noted that, in some cases, the LP occupies a very small portion of the original image and
therefore the vehicle detection stage is essential for the effectiveness of our ALPR system.

77

(a) FPs predicted by the network (dashed bounding boxes).

(b) Vehicles not predicted by the network (dashed bounding boxes).

Figure 5.11: FP and FN predictions obtained in the vehicle detection stage. As can be seen in (a), the predicted FPs
are mostly unlabelled vehicles in the background. In (b), one can see that the vehicles not predicted by the network
(i.e., the FNs) are predominantly those occluded or in the background.

Table 5.4: Results attained by the modified Fast-YOLOv2 network in the LP detection and layout classification
stage. The recall rates achieved in all datasets when disregarding the vehicles not detected in the previous stage are
presented in (a), while the recall rates obtained when considering the entire test set are listed in (b).

(a)

Dataset Recall (%)
Caltech Cars 99.13 ± 1.19
EnglishLP 100.00 ± 0.00
UCSD-Stills 100.00 ± 0.00
ChineseLP 100.00 ± 0.00
AOLP 99.94 ± 0.08

OpenALPR-EU 98.52 ± 0.51
SSIG-SegPlate 99.83 ± 0.26
UFPR-ALPR 98.67 ± 0.25

Average 99.51 ± 0.29

(b)

Dataset Recall (%)
Caltech Cars 99.13 ± 1.19
EnglishLP 100.00 ± 0.00
UCSD-Stills 100.00 ± 0.00
ChineseLP 99.63 ± 0.34
AOLP 99.85 ± 0.10

OpenALPR-EU 98.52 ± 0.51
SSIG-SegPlate 99.80 ± 0.24
UFPR-ALPR 98.67 ± 0.25

Average 99.45 ± 0.33

Some images where our network failed either to detect the LP or to classify the LP
layout are shown in Figure 5.13. As can be seen in Figure 5.13a, our network failed to detect
the LP in cases where there is a textual block very similar to an LP in the vehicle patch, or even
when the LP of another vehicle appears within the patch (a single case in our experiments). This
is due to the fact that one vehicle can be almost totally occluded by another. Regarding the
errors in which the LP layout was misclassified, they occurred mainly in cases where the LP is
considerably similar to LP of other layouts. For example, the left image in Figure 5.13b shows a
European LP (which has exactly the same colors and number of characters as standard Chinese
LPs) incorrectly classified as Chinese.

78

Figure 5.12: LPs correctly detected and classified by the proposed approach. Observe that the modified Fast-YOLOv2
model is robust for this task regardless of vehicle type, lighting conditions, camera distance, and other factors.

It is important to note that it is still possible to correctly recognize the characters in some
cases where our network has failed at this stage. For example, in the right image in Figure 5.13a,
the detected region contains exactly the same text as the ground truth (i.e., the LP). Moreover, a
Brazilian LP classified as European (e.g., the middle image in Figure 5.13b) can still be correctly
recognized in the next stage since the only post-processing rule we apply to European LPs is that
they have between 5 and 8 characters (see Section 4.2.3).

Additionally, we could employ post-processing methods in the next stage in cases where
more than one LP is detected, for example, evaluate on each detected LP if the number of
detected/recognized characters is within the range defined for the predicted layout, or consider

79

(a) Examples of images in which the LP position was predicted incorrectly.

(b) Examples of images in which the position of the LP was predicted correctly, but not the layout.
In the left image, the LP is European. In the middle and right ones, the LPs are Brazilian.

Figure 5.13: Some images in which our network failed either to detect the LP or to classify the LP layout.

only the LP in which the characters’ confidence is greater. However, since the actual LP can be
detected with very low confidence values (i.e., ≤ 0.1), many false negatives would have to be
analyzed, increasing the overall computational cost of the system.

As mentioned earlier, in this stage we disabled the color-related data augmentation of
the Darknet framework [69]. In this way, we eliminated more than half of the layout classification
errors obtained when the model was trained using images with changed colors (this evaluation
was performed in the validation set). We believe this is due to the fact that the network leverages
color information (which may be distorted with some data augmentation approaches) for layout
classification, as well as other characteristics such as the position of the characters and symbols
on the LP.

5.3.3 License Plate Recognition (Overall Evaluation)
As in the vehicle detection stage, once the YOLOv2 model was trained, we first evaluated (in the
validation set) different confidence threshold values in the validation set in order to miss as few
characters as possible, while avoiding high FP rates. We adopted a 0.5 confidence threshold for
all LPs except European ones, where a higher threshold (i.e., 0.65) was adopted since European
LPs can have up to 8 characters and several FPs were predicted on LPs with fewer characters
when using a lower confidence threshold.

It is important to note that we considered the ‘1’ and ‘I’ characters as a single class in the
assessments performed in the SSIG-SegPlate and UFPR-ALPR datasets, as those characters are
identical but occupy different positions on Brazilian LPs. The same procedure was done in [33].

For each dataset, we compared the proposed ALPR system with state-of-the-art methods
that were evaluated using the same protocol as the one described in Section 5.2. In addition,

80

our results are compared with those obtained by two commercial systems5: Sighthound [18]
and OpenALPR6 [102]. According to the authors, both systems are robust for the detection and
recognition of LPs of different layouts. It is important to emphasize that although the commercial
systems were not tuned specifically for the datasets employed in our experiments, they are trained
in much larger private datasets, which is a great advantage, especially in deep learning approaches.
In addition, OpenALPR contains specialized solutions for LPs from different regions (e.g., China,
Europe, among others) and the user must enter the correct region before using its API, that is, it
requires prior knowledge regarding the LP layout. Sighthound, on the other hand, uses a single
model/approach for LPs from different countries/regions, as well as the proposed system.

The results obtained in all datasets by the proposed ALPR system, previous works, and
commercial systems are shown in Table 5.5. In the average of five runs, the proposed system
correctly recognized 96.8% of the LPs, outperforming both previous works and commercial
systems in the ChineseLP, OpenALPR-EU, SSIG-SegPlate and UFPR-ALPR datasets. In the
other datasets, the proposed approach obtained competitive results to the best result attained by
the baselines.

Table 5.5: Recognition rates (%) obtained by the proposed system, previous works, and commercial systems in all
datasets used in our experiments. To the best of our knowledge, in the literature, only algorithms for LP detection
and character segmentation were evaluated in the Caltech Cars, UCSD-Stills and ChineseLP datasets. Therefore,
our approach is compared only with the commercial systems in these datasets.

Dataset [87] [95] [33] [13] [30] Sighthound OpenALPR Proposed∗ Proposed

Caltech Cars − − − − − 95.7 ± 2.7 99.1 ± 1.2 96.1 ± 1.8 98.7 ± 1.2
EnglishLP 97.0 − − − − 92.5 ± 3.7 78.6 ± 3.6 95.5 ± 2.4 95.7 ± 2.3
UCSD-Stills − − − − − 98.3 98.3 97.3 ± 1.9 98.0 ± 1.4
ChineseLP − − − − − 90.4 ± 2.4 92.6 ± 1.9 95.4 ± 1.1 97.5 ± 0.9
AOLP − 99.8∗∗ − − − 87.1 ± 0.8 − 98.4 ± 0.7 99.2 ± 0.4

OpenALPR-EU − − 93.5 − − 92.6 90.7 95.7 ± 1.9 96.9 ± 1.1
SSIG-SegPlate − − 88.6 88.8 85.5 82.8 92.0 96.9 ± 0.5 98.2 ± 0.5
UFPR-ALPR − − − − 64.9 62.3 82.2 82.5 ± 1.1 90.0 ± 0.7

Average − − − − − 87.7 ± 2.4 90.5 ± 2.3 94.7 ± 1.4 96.8 ± 1.0
∗ The proposed ALPR system assuming that all LP layouts were classified as undefined (i.e., without layout classification).
∗∗ The LP patches for the LP recognition stage were cropped directly from the ground truth in [95].

The proposed system attained results similar to those obtained by OpenALPR in the
Caltech Cars dataset (98.7% against 99.1%, which represents a difference of less than one LP
per run, on average, as are only 46 testing images), even though our system does not require
prior knowledge. Regarding the EnglishLP dataset, our system performed better than the best
baseline [87] in 2 of the 5 runs. Although we used the same number of images for testing, in [87]
the dataset was divided only once and the images used for testing were not specified. In the
UCSD-Stills dataset, both commercial systems reached a recognition rate of 98.3% while our
system achieved 98% on average (with a standard deviation of 1.4%). Lastly, in the AOLP
dataset, the proposed approach obtained similar results to those reported by Zhuang et al. [95],
even though in their work the LP patches used as input in the LP recognition stage were cropped
directly from the ground truth; in other words, they did not take into account vehicles or LPs
not detected in the earlier stages, nor background noise in the LP patches due to less accurate
LP detections.

5OpenALPR and Sighthound systems have APIs available at https://www.openalpr.com/cloud-
api.html and https://www.sighthound.com/products/cloud, respectively. The results presented
here were obtained in January 2019.

6Although OpenALPR has an open source version, the commercial version uses different algorithms for OCR
trained with larger datasets to improve accuracy [102].

https://www.openalpr.com/cloud-api.html
https://www.openalpr.com/cloud-api.html
https://www.sighthound.com/products/cloud

81

To evaluate the impact of classifying the LP layout prior to LP recognition, we also report
in Table 5.5 the results obtained when assuming that all LP layouts were classified as undefined
and that a generic approach (i.e., without heuristic rules) was employed in the LP recognition
stage. The mean recognition rate was improved by 2.1%. We consider this strategy (layout
classification + heuristic rules) essential for accomplishing outstanding results in datasets that
contain LPs with fixed positions for letters and digits (e.g., Brazilian and Chinese LPs), as the
recognition rates attained in the ChineseLP, SSIG-SegPlate and UFPR-ALPR datasets were
improved by 3.6%, on average.

The robustness of our ALPR system is remarkable since it achieved recognition rates
higher than 95% in all datasets except the proposed one. The commercial systems, on the other
hand, achieved similar results only in the Caltech Cars and UCSD-Stills datasets, which contain
exclusively American LPs, and performed poorly (i.e., recognition rates below 85%) in at least
two datasets. This suggests that the commercial systems are not so well trained for LPs of
other layouts.

Furthermore, the commercial systems often predicted FPs that our system ignored, for
example, two or three LPs in the same vehicle, phone numbers on storefronts, or even illegible LPs
on very distant vehicles. This directly affects the overall cost of those systems since many FPs
have to be processed in the LP recognition stage. In Figure 5.14, as an example, we compare the
detections obtained by the proposed approach and commercial systems in the same image.

(a) Proposed (b) Sighthound [18] (c) OpenALPR [102]
Figure 5.14: Comparison of the detections obtained by the proposed approach and commercial systems in the same
image (slightly cropped for display purposes). As can be seen, the commercial systems often predicted FPs (red
bounding boxes) that our system ignored. Remark that the LPs of the vehicles in the background are not legible.

Although OpenALPR achieved better results than Sighthound (on average across all
datasets), the latter system can be seen as more robust than the former since it does not require prior
knowledge regarding the LP layout. In addition, OpenALPR does not support Taiwanese LPs.
In this sense, we tried to employ OpenALPR solutions designed for LPs from other countries
(including China) in the experiments performed in the AOLP dataset (which contains only
Taiwanese LPs), however, very low detection and recognition rates were obtained.

In Table 5.5, it can also be observed that the UFPR-ALPR dataset is the most challenging
dataset among those employed in this work, as neither our approach nor the baselines were able to
achieve recognition rates above 90% in its test set. This is due to the fact that we eliminated many
of the constraints found in other datasets by using different non-static cameras to capture images
from different types of vehicles (cars, motorcycles, buses and trucks) with complex backgrounds
and under different lighting conditions, as detailed in Section 4.1.

According to our experiments, a great improvement in our system lies on classifying
the LP layout prior to LP recognition, so that we can employ layout-specific approaches for the
recognition task. Moreover, we trained every network using images from several datasets, which
were collected under different conditions, as well as many other images created artificially. In
this way, we prevented overfitting in certain scenarios.

82

Figure 5.15 shows some examples of LPs that were correctly recognized by the proposed
approach. As can be seen, our system can generalize well and correctly recognize LPs of different
layouts, even when the images were captured under challenging conditions. It is noteworthy that
in this work, as in [33], the exact same networks were applied to all datasets; in other words, no
specific training procedure was used to tune the networks for a given dataset or layout class.

UFD69K 018VFJ 281SGL 3WVM533

MCA9954 HJN2081 IOZ3616 AUG0936

AK6972 CG08I5 AK8888 A36296

ZG806KF DU166BF 317J939 W0BVWMK4

0750J0 UH7329 F9F183 6B7733

Figure 5.15: Examples of LPs that were correctly recognized by the proposed ALPR system. In the rows, LPs of
different layout classes are shown. From top to bottom: American, Brazilian, Chinese, European and Taiwanese LPs.

Our system had no difficulty recognizing LPs of any specific layout, even those with
less training examples (e.g., red Brazilian LPs or those with two rows of characters). According
to our experiments, this is due to the negative images used when training the CR-NET model, as
well as the images generated employing the data augmentation technique proposed in [13].

Some LPs in which our system failed to correctly detect/recognize all characters are
shown in Figure 5.16. As one may see, the errors occurred mainly in challenging LP images,
where even humans can make mistakes. Note that, in some cases, one character might become
very similar to another due to the inclination of the LP, the LP frame, shadows, blur, etc.

Although highly unlikely (i.e., ≈ 0.05%), in some cases the network predicted a character
in the outer region of the LP frame (i.e., an FP). In this sense, we evaluated adding a smaller
margin to the LP patch before feeding it into the recognition network, however, better overall
results were not achieved. This experiment was carried out in the validation set.

In Table 5.6, we report the time required for each network in our system to process an
input. As in [11, 30], the reported time is the average time spent processing all inputs in each
stage, assuming that the network weights are already loaded and that there is a single vehicle
in the scene. It is remarkable that although a deep CNN model (i.e., YOLOv2) is used for
vehicle detection, our system is still able to process images at 73 FPS on a high-end GPU. This is
sufficient for real-time usage, as commercial cameras generally record videos at 30 FPS.

83

AB0416 (AR0416) 2MFE674 (2MFF674) HOR8361 (HDR8361) AK04I3 (AK0473)

AYH5087 (AXH5087) 430463TC (30463TC) YB8096 (Y88096) DJ9A4AE (DJ944AE)

RL0020- (L0020I) ATT4026 (ATT4025) ZG594TSH (ZG594TS) 4NTU770 (4NIU770)

Figure 5.16: Examples of LPs that were incorrectly recognized by the proposed ALPR system. The ground truth is
shown in parentheses.

Table 5.6: The time required for each network in our system to process an input on an NVIDIA Titan Xp GPU.

ALPR Stage Model Time (ms) FPS

Vehicle Detection YOLOv2 8.5382 117
LP Detection and

Layout Classification Fast-YOLOv2 3.0854 324

LP Recognition CR-NET 1.9935 502

End-to-end - 13.6171 73

It should be noted that practically all images from the datasets used in our experiments
contain only one labeled vehicle. However, to perform a more realistic analysis of the execution
time, we listed in Table 5.7 the time required for the proposed system to process images assuming
that there is a certain number of vehicles in every image (note that vehicle detection is performed
only once, regardless of the number of vehicles in the image). According to the results, our
system is able to process more than 30 FPS even when there are 4 vehicles in the scene. This
information is relevant since some ALPR approaches, including the one proposed in our previous
work [30], can only process frames in real time if there is at most one vehicle in the scene.

Table 5.7: Execution times considering that there is a certain number of vehicles in every image. Remark that our
approach is able to process more than 30 FPS even when there are 4 vehicles in the image.

Vehicles Time (ms) FPS

1 13.6171 73
2 18.6960 53
3 23.7749 42
4 28.8538 35
5 33.9327 29

The proposed approach achieved an outstanding trade-off between accuracy and speed,
unlike others recently proposed in the literature. For example, the methods proposed in [11, 13]
are capable of processing more images per second than our system but reached poor recognition
rates (i.e., below 65%) in at least one dataset in which they were evaluated. On the other hand,

84

impressive results were achieved on different scenarios in [14, 17, 33]. However, the methods
presented in these works are computationally expensive and cannot be applied in real time. The
Sighthound and OpenALPR commercial systems do not report the execution time.

It is important to highlight the number of experiments carried out to develop the proposed
ALPR system. More than 50 models were evaluated (with different input sizes, number of filters
and layers) and combined in several ways. It takes about two days and a half to train our networks
on an NVIDIA Titan Xp GPU (a single run). In the testing phase, unlike most works in the
literature (which report the results achieved in a single run), we reported in each stage the average
result of 5 runs of our approach to avoid an overestimation or bias in the random division of the
images into the training, validation and test subsets.

85

6 Conclusions

In this work, we presented an efficient and layout-independent ALPR system using the state-
of-the-art YOLO object detection CNNs. First, the YOLOv2 model was employed for vehicle
detection. Second, the Fast-YOLOv2 model was used for LP detection and layout classification.
Finally, we detected and recognized all LP characters simultaneously using CR-NET, avoiding
the challenging character segmentation task. We performed several data augmentation tricks and
modifications to each network to achieve the best speed/accuracy trade-off at each stage.

We also introduced a public dataset for ALPR that includes 4,500 fully annotated images
(with over 30,000 LP characters) from 150 vehicles in real-world scenarios where both the vehicle
and the camera (inside another vehicle) are moving. Compared to the SSIG-SegPlate dataset [32],
which is the public dataset of Brazilian LPs best known and most frequently used in the ALPR
context, our dataset has more than twice the images and contains a larger variety in different
aspects. Furthermore, we manually labeled the position of the vehicles, LPs and characters, as
well as their classes, in all datasets used in this work since they have no annotations or contain
labels only for part of the ALPR pipeline. It should be noted that the labeling process took a
considerable amount of time since there are several bounding boxes to be labeled on each image
(precisely, we manually labeled 38,351 bounding boxes on 6,239 images). These annotations are
also publicly available to the research community, assisting the development and evaluation of
new ALPR approaches as well as the fair comparison among published works.

The current bottleneck of ALPR systems is the LP recognition stage. In this sense, we
proposed a unified approach for LP detection and layout classification in order to improve the
recognition results through post-processing rules. This strategy was essential for accomplishing
outstanding results since, depending on the LP layout class, we avoided errors in characters that
are often misclassified and also in the number of predicted characters to be considered.

Our system achieved an average recognition rate of 96.8% across eight public datasets
used in the experiments, outperforming both previous works and commercial systems in the
ChineseLP, OpenALPR-EU, SSIG-SegPlate and UFPR-ALPR datasets. In the other datasets, the
proposed approach obtained competitive results to the best result attained by the baselines. The
robustness of our ALPR system is remarkable since, unlike some baselines, we did not apply any
specific training procedure to tune the networks for a given dataset or layout class. Instead, we
use heuristic rules in cases where the LP layout is classified with a high confidence value.

The results demonstrated that the UFPR-ALPR dataset is the most challenging dataset
among those employed in this work, as neither our approach nor the baselines were able to
achieve recognition rates above 95% in its test set. OpenALPR [102], which leverage prior
knowledge regarding the LP layout, obtained the best result (i.e., 82.22%) among the baselines.
The proposed system performed considerably better, with a recognition rate of 89.96%.

We also carried out experiments to measure the execution time. Compared to previous
works, our system achieved an impressive trade-off between accuracy and speed. Specifically,
even though the proposed approach achieved recognition rates above 95% in all datasets except

86

the proposed one, it is able to process images in real time even when there are 4 vehicles in
the scene.

6.1 Future Work
As future work, we intend to employ other object detection systems such as SSD [81] and
Tiny-SSD [129] for ALPR, aiming to design a system that achieves higher recognition rates
or processes images with a lower computational cost. We also want to explore the vehicle’s
make and model in the ALPR pipeline as the proposed dataset provides such information. As
stated in [10], it is possible to further improve the system performance using post-processing
approaches considering that there is a database of registered LPs and vehicle models.

In addition, we plan to correct the alignment of the detected LPs and also rectify them
in order to achieve even better results in the LP recognition stage. Some methods have been
employed for these tasks in the literature [26, 33, 130, 131], generally improving the accuracy of
LP recognition. We intend to evaluate the effect of different approaches in our ALPR system from
both the speed and accuracy points of view, as such approaches can be computationally expensive.

We want to create a large-scale ALPR dataset with Mercosur LPs. Mercosur (Mercado
Común del Sur, i.e. Southern Common Market in Castilian) is an economic and political bloc
comprising Argentina, Brazil, Paraguay and Uruguay1. These countries are adopting a new
standard of LPs (see Figure 6.1) for newly purchased vehicles, inspired by the integrated system
adopted several years ago by European Union countries [132]. Therefore, a large dataset would
enable the community to apply, develop and adapt various ALPR systems for this new layout.

Figure 6.1: The new standard of Mercosur LPs. Observe that the letters and digits might be in any position. Above
is shown the initial pattern that each country adopted.

Finally, we intend to conduct additional experiments in our next studies, which includes:
(i) using for training all available datasets except one, which would be used for testing. In this
way, we can truly assess the robustness of our ALPR system and also identify drawbacks such
as low detection rates in certain scenarios and low recognition rates in a specific LP layout;
(ii) fully labeling some public datasets that have annotations only for LP detection [27,90], which
would allow the entire ALPR pipeline to be evaluated in different scenarios without acquiring
new images; and (iii) comparing our approach with other commercial systems such as Plate
Recognizer2 and Meerkat3. As these systems have trial versions through APIs, they can be
evaluated with relatively little effort. It is worth noting that large private datasets are used to train
these systems and outperforming them demonstrates the robustness of the proposed system.

1Venezuela is currently suspended and Bolivia is in the process of becoming a member.
2The Plate Recognizer API is available at https://platerecognizer.com/.
3The Merkat API is available at https://www.meerkat.com.br/.

https://platerecognizer.com/
https://www.meerkat.com.br/

87

6.2 Publications
The works published during the master’s degree (or shortly after) are listed below [13, 30, 72,
133–139]. The publications related to the dissertation are marked with asterisks [*]. Although
some papers are not directly related to ALPR, deep learning approaches (including YOLO-based
models) were employed in all of them, contributing to the results obtained in this work.

• [*] R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves,
W. R. Schwartz, D. Menotti, “A robust real-time automatic license plate recogni-
tion based on the YOLO detector,” in International Joint Conference on Neural
Networks (IJCNN), July 2018, pp. 1–10.

• [*] R. Laroca, L. A. Zanlorensi, G. R. Gonçalves, E. Todt, W. R. Schwartz, D. Menotti,
“An efficient and layout-independent automatic license plate recognition system based on
the YOLO detector,” IET Intelligent Transport Systems, vol. 15, no. 4, pp. 483-503, 2021.

• [*] R. Laroca, V. Barroso, M. A. Diniz, G. R. Gonçalves, W. R. Schwartz, D. Menotti,
“Convolutional neural networks for automatic meter reading,” Journal of Electronic
Imaging, vol. 28, no. 1, p. 013023, 2019.

• [*] G. R. Gonçalves, M. A. Diniz, R. Laroca, D. Menotti, W. R. Schwartz, “Real-time
automatic license plate recognition through deep multi-task networks,” in Conference
on Graphics, Patterns and Images (SIBGRAPI), Oct 2018, pp. 110-117.

• [*] G. R. Gonçalves, M. A. Diniz, R. Laroca, D. Menotti, W. R. Schwartz, “Multi-task
learning for low-resolution license plate recognition,” in Iberoamerican Congress on
Pattern Recognition (CIARP), Oct 2019, pp. 251-261.

• E. Severo, R. Laroca, C. S. Bezerra, L. A. Zanlorensi, D. Weingaertner, G. Moreira,
D. Menotti, “A benchmark for iris location and a deep learning detector evaluation,” in
International Joint Conference on Neural Networks (IJCNN), July 2018, pp. 1–7.

• D. R. Lucio, R. Laroca, E. Severo, A. S. Britto Jr., D. Menotti, “Fully convolutional
networks and generative adversarial networks applied to sclera segmentation,” in IEEE
International Conference on Biometrics: Theory, Applications, and Systems (BTAS),
Oct 2018, pp. 1-7.

• C. S. Bezerra, R. Laroca, D. R. Lucio, E. Severo, L. F. Oliveira, A. S. Britto Jr.,
D. Menotti, “Robust iris segmentation based on fully convolutional networks and genera-
tive adversarial networks,” inConference on Graphics, Patterns and Images (SIBGRAPI),
Oct 2018, pp. 281-288.

• L. A. Zanlorensi, E. Luz, R. Laroca, A. S. Britto Jr., L. S. Oliveira, D. Menotti, “The
impact of preprocessing on deep representations for iris recognition on unconstrained
environments,” in Conference on Graphics, Patterns and Images (SIBGRAPI), Oct 2018,
pp. 289-296.

88

References

[1] R. A. Lotufo, A. D. Morgan, and A. S. Johnson, “Automatic number-plate recognition,” in
IEE Colloquium on Image Analysis for Transport Applications, Feb 1990, pp. 1–6.

[2] K. Kanayama, Y. Fujikawa, K. Fujimoto, and M. Horino, “Development of vehicle-
license number recognition system using real-time image processing and its application
to travel-time measurement,” in IEEE Vehicular Technology Conference, May 1991, pp.
798–804.

[3] K. Miyamoto, K. Nagano, M. Tamagawa, I. Fujita, and M. Yamamoto, “Vehicle license-
plate recognition by image analysis,” in International Conference on Industrial Electronics,
Control and Instrumentation (IECON), vol. 3, Oct 1991, pp. 1734–1738.

[4] C. N. E. Anagnostopoulos, I. E. Anagnostopoulos, I. D. Psoroulas, V. Loumos, and
E. Kayafas, “License plate recognition from still images and video sequences: A survey,”
IEEE Transactions on Intelligent Transportation Systems, vol. 9, no. 3, pp. 377–391, 2008.

[5] S. Kranthi, K. Pranathi, and A. Srisaila, “Automatic number plate recognition,” Interna-
tional Journal of Advancements in Technology, vol. 2, no. 3, pp. 408–422, 2011.

[6] S. Du, M. Ibrahim, M. Shehata, and W. Badawy, “Automatic license plate recognition
(ALPR): A state-of-the-art review,” IEEE Transactions on Circuits and Systems for Video
Technology, vol. 23, no. 2, pp. 311–325, Feb 2013.

[7] C. Patel, D. Shah, and A. Patel, “Automatic number plate recognition system (ANPR): A
survey,” International Journal of Computer Applications, vol. 69, no. 9, pp. 21–33, May
2013.

[8] O. Bulan, V. Kozitsky, P. Ramesh, and M. Shreve, “Segmentation- and annotation-
free license plate recognition with deep localization and failure identification,” IEEE
Transactions on Intelligent Transportation Systems, vol. 18, no. 9, pp. 2351–2363, 2017.

[9] G.-S. Hsu, S.-D. Zeng, C.-W. Chiu, and S.-L. Chung, “A comparison study on motorcycle
license plate detection,” in IEEE International Conference on Multimedia Expo Workshops
(ICMEW), June 2015, pp. 1–6.

[10] G. R. Gonçalves, D. Menotti, and W. R. Schwartz, “License plate recognition based on
temporal redundancy,” in IEEE International Conference on Intelligent Transportation
Systems (ITSC), Nov 2016, pp. 2577–2582.

[11] S. M. Silva and C. R. Jung, “Real-time brazilian license plate detection and recognition
using deep convolutional neural networks,” in Conference on Graphics, Patterns and
Images (SIBGRAPI), Oct 2017, pp. 55–62.

[12] J. Špaňhel, J. Sochor, R. Juránek, A. Herout, L. Maršík, and P. Zemčík, “Holistic
recognition of low quality license plates by CNN using track annotated data,” in IEEE
International Conference on Advanced Video and Signal Based Surveillance (AVSS), Aug
2017, pp. 1–6.

89

[13] G. R. Gonçalves, M. A. Diniz, R. Laroca, D. Menotti, and W. R. Schwartz, “Real-time
automatic license plate recognition through deep multi-task networks,” in Conference on
Graphics, Patterns and Images (SIBGRAPI), Oct 2018, pp. 110–117.

[14] H. Li, P. Wang, M. You, and C. Shen, “Reading car license plates using deep neural
networks,” Image and Vision Computing, vol. 72, pp. 14–23, 2018.

[15] J. Deng, W. Dong, R. Socher, L. J. Li, K. Li, and L. Fei-Fei, “ImageNet: A large-scale
hierarchical image database,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2009, pp. 248–255.

[16] J. Schmidhuber, “Deep learning in neural networks: An overview,” Neural Networks,
vol. 61, pp. 85–117, 2015.

[17] H. Li, P.Wang, and C. Shen, “Toward end-to-end car license plate detection and recognition
with deep neural networks,” IEEE Transactions on Intelligent Transportation Systems, pp.
1–11, 2018.

[18] S. Z. Masood, G. Shu, A. Dehghan, and E. G. Ortiz, “License plate detection and
recognition using deeply learned convolutional neural networks,” arXiv preprint, vol.
arXiv:1703.07330, 2017. [Online]. Available: http://arxiv.org/abs/1703.07330

[19] A. M. Al-Ghaili, S. Mashohor, A. R. Ramli, and A. Ismail, “Vertical-edge-based car-
license-plate detection method,” IEEE Transactions on Vehicular Technology, vol. 62,
no. 1, pp. 26–38, Jan 2013.

[20] M. R. Asif, Q. Chun, S. Hussain, and M. S. Fareed, “Multiple licence plate detection for
Chinese vehicles in dense traffic scenarios,” IET Intelligent Transport Systems, vol. 10,
no. 8, pp. 535–544, 2016.

[21] M. R. Asif, Q. Chun, S. Hussain, M. S. Fareed, and S. Khan, “Multinational vehicle
license plate detection in complex backgrounds,” Journal of Visual Communication and
Image Representation, vol. 46, pp. 176–186, 2017.

[22] M. S. Al-Shemarry, Y. Li, and S. Abdulla, “Ensemble of adaboost cascades of 3L-LBPs
classifiers for license plates detection with low quality images,” Expert Systems with
Applications, vol. 92, pp. 216–235, 2018.

[23] J. A. Guggenheim and J. M. Silversmith, “Confederate license plates at the constitutional
crossroads: Vanity plates, special registration organization plates, bumper stickers,
viewpoints, vulgarity, and the first amendment,” U. Miami L. Rev., vol. 54, p. 563, 2000.

[24] J. Tian, R. Wang, G. Wang, J. Liu, and Y. Xia, “A two-stage character segmentation method
for chinese license plate,” Computers & Electrical Engineering, vol. 46, pp. 539–553,
2015.

[25] C. Gou, K. Wang, Y. Yao, and Z. Li, “Vehicle license plate recognition based on
extremal regions and restricted boltzmann machines,” IEEE Transactions on Intelligent
Transportation Systems, vol. 17, no. 4, pp. 1096–1107, April 2016.

[26] M. Dong, D. He, C. Luo, D. Liu, and W. Zeng, “A CNN-based approach for automatic
license plate recognition in the wild,” in British Machine Vision Conference (BMVC),
September 2017, pp. 1–12.

http://arxiv.org/abs/1703.07330

90

[27] Y. Yuan, W. Zou, Y. Zhao, X. Wang, X. Hu, and N. Komodakis, “A robust and efficient
approach to license plate detection,” IEEE Transactions on Image Processing, vol. 26,
no. 3, pp. 1102–1114, March 2017.

[28] F. Abtahi, Z. Zhu, and A. M. Burry, “A deep reinforcement learning approach to character
segmentation of license plate images,” in IAPR International Conference on Machine
Vision Applications, May 2015, pp. 539–542.

[29] J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” in IEEE Conference on Computer Vision and Pattern Recognition
(CVPR), June 2016, pp. 779–788.

[30] R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves, W. R. Schwartz,
and D. Menotti, “A robust real-time automatic license plate recognition based on the
YOLO detector,” in International Joint Conference on Neural Networks (IJCNN), July
2018, pp. 1–10.

[31] Y. LeCun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp.
436–444, 2015.

[32] G. R. Gonçalves, S. P. G. da Silva, D. Menotti, and W. R. Schwartz, “Benchmark for
license plate character segmentation,” Journal of Electronic Imaging, vol. 25, no. 5, p.
053034, 2016.

[33] S. M. Silva and C. R. Jung, “License plate detection and recognition in unconstrained
scenarios,” in European Conference on Computer Vision (ECCV), Sept 2018, pp. 593–609.

[34] J. Salamon and J. P. Bello, “Deep convolutional neural networks and data augmentation
for environmental sound classification,” IEEE Signal Processing Letters, vol. 24, no. 3, pp.
279–283, March 2017.

[35] G. S. Hsu, J. C. Chen, and Y. Z. Chung, “Application-oriented license plate recognition,”
IEEE Transactions on Vehicular Technology, vol. 62, no. 2, pp. 552–561, Feb 2013.

[36] J. Redmon and A. Farhadi, “YOLO9000: Better, faster, stronger,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 6517–6525.

[37] ——, “YOLOv3: An incremental improvement,” CoRR, vol. abs/1804.02767, 2018.
[Online]. Available: http://arxiv.org/abs/1804.02767

[38] M. Everingham, L. Van Gool, C. K. I. Williams, J. Winn, and A. Zisserman, “The pascal
visual object classes (VOC) challenge,” International Journal of Computer Vision, vol. 88,
no. 2, pp. 303–338, Jun 2010.

[39] T.-Y. Lin, M. Maire, S. Belongie, J. Hays, P. Perona, D. Ramanan, P. Dollár, and C. L.
Zitnick, “Microsoft COCO: Common objects in context,” in European Conference on
Computer Vision (ECCV), 2014, pp. 740–755.

[40] G. S. Hsu, A. Ambikapathi, S. L. Chung, and C. P. Su, “Robust license plate detection
in the wild,” in IEEE International Conference on Advanced Video and Signal Based
Surveillance (AVSS), Aug 2017, pp. 1–6.

http://arxiv.org/abs/1804.02767

91

[41] L. Xie, T. Ahmad, L. Jin, Y. Liu, and S. Zhang, “A new CNN-based method for multi-
directional car license plate detection,” IEEE Transactions on Intelligent Transportation
Systems, vol. 19, no. 2, pp. 507–517, Feb 2018.

[42] G. Ning, Z. Zhang, C. Huang, X. Ren, H. Wang, C. Cai, and Z. He, “Spatially supervised
recurrent convolutional neural networks for visual object tracking,” in IEEE International
Symposium on Circuits and Systems (ISCAS), May 2017, pp. 1–4.

[43] B. Wu, F. Iandola, P. H. Jin, and K. Keutzer, “SqueezeDet: Unified, small, low power fully
convolutional neural networks for real-time object detection for autonomous driving,” in
IEEE Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), July
2017, pp. 446–454.

[44] S. Tripathi, G. Dane, B. Kang, V. Bhaskaran, and T. Nguyen, “LCDet: Low-complexity
fully-convolutional neural networks for object detection in embedded systems,” in IEEE
Conference on Computer Vision and Pattern Recognition Workshops (CVPRW), 2017, pp.
411–420.

[45] W. Zhou, H. Li, Y. Lu, and Q. Tian, “Principal visual word discovery for automatic license
plate detection,” IEEE Transactions on Image Processing, vol. 21, no. 9, pp. 4269–4279,
Sept 2012.

[46] OpenALPR Software Solutions, “OpenALPR-EU dataset,” https://github.com/openalpr/
benchmarks/tree/master/endtoend/eu, 2016.

[47] B. A. Krinski, D. V. Ruiz, G. Z. Machado, and E. Todt, “Masking salient object detection,
a mask region-based convolutional neural network analysis for segmentation of salient
objects,” in Latin American Robotics Symposium (LARS), 2019, pp. 55–60.

[48] J. Davis and M. Goadrich, “The relationship between precision-recall and ROC curves,”
in International Conference on Machine Learning (ICML), 2006, pp. 233–240.

[49] F. Giunchiglia, P. Shvaiko, and M. Yatskevich, “S-Match: an algorithm and an implemen-
tation of semantic matching,” in The Semantic Web: Research and Applications. Springer
Berlin Heidelberg, 2004, pp. 61–75.

[50] H.-H. Do, S. Melnik, and E. Rahm, “Comparison of schema matching evaluations,” inWeb,
Web-Services, and Database Systems. Springer Berlin Heidelberg, 2003, pp. 221–237.

[51] D. M. W. Powers, “What the F-measure doesn’t measure: Features, flaws,
fallacies and fixes,” arXiv preprint, vol. arXiv:1503.06410, 2015. [Online]. Available:
http://arxiv.org/abs/1503.06410

[52] I. Goodfellow, Y. Bengio, and A. Courville, Deep Learning. MIT Press, 2016.

[53] J. Redmon, “Computers can see. now what?” TEDxGateway, 2018. [Online]. Available:
https://www.youtube.com/watch?v=XS2UWYuh5u0

[54] Y. Bengio, A. Courville, and P. Vincent, “Representation learning: A review and new
perspectives,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 35,
no. 8, pp. 1798–1828, Aug 2013.

https://github.com/openalpr/benchmarks/tree/master/endtoend/eu
https://github.com/openalpr/benchmarks/tree/master/endtoend/eu
http://arxiv.org/abs/1503.06410
https://www.youtube.com/watch?v=XS2UWYuh5u0

92

[55] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet classification with deep
convolutional neural networks,” in International Conference on Neural Information
Processing Systems (NIPS), 2012, pp. 1097–1105.

[56] L. Deng and D. Yu, “Deep learning: Methods and applications,” Foundations and Trends
in Signal Processing, vol. 7, no. 3–4, pp. 197–387, 2014.

[57] M. A. Ponti, L. S. F. Ribeiro, T. S. Nazare, T. Bui, and J. Collomosse, “Everything
you wanted to know about deep learning for computer vision but were afraid to ask,” in
Conference on Graphics, Patterns and Images Tutorials (SIBGRAPI-T), 2017, pp. 17–41.

[58] S. Tejani, “Machines that can see: Convolutional neural networks,” 2016. [Online].
Available: https://shafeentejani.github.io/2016-12-20/convolutional-neural-nets/

[59] A. L. Maas, A. Y. Hannun, and A. Y. Ng, “Rectifier nonlinearities improve neural network
acoustic models,” in International Conference on Machine Learning (ICML), 2013.

[60] V. Dumoulin and F. Visin, “A guide to convolution arithmetic for deep
learning,” arXiv preprint, vol. arXiv:1603.07285, 2016. [Online]. Available:
http://arxiv.org/abs/1603.07285

[61] Y. Boureau, F. Bach, Y. LeCun, and J. Ponce, “Learning mid-level features for recognition,”
in IEEE Conference on Computer Vision and Pattern Recognition, 2010, pp. 2559–2566.

[62] Y.-L. Boureau, J. Ponce, and Y. LeCun, “A theoretical analysis of feature pooling in visual
recognition,” in International Conference on Machine Learning, 2010, pp. 111–118.

[63] M. Lin, Q. Chen, and S. Yan, “Network in network,” in International Conference on
Learning Representations (ICLR), 2014, pp. 1–10.

[64] N. Srivastava, G. Hinton, A. Krizhevsky, I. Sutskever, and R. Salakhutdinov, “Dropout: A
simple way to prevent neural networks from overfitting,” Journal of Machine Learning
Research, vol. 15, pp. 1929–1958, 2014.

[65] S. Ioffe and C. Szegedy, “Batch normalization: Accelerating deep network training by
reducing internal covariate shift,” in International Conference on Machine Learning
(ICML), 2015, pp. 448–456.

[66] T. Cooijmans, N. Ballas, C. Laurent, and A. C. Courville, “Recurrent batch normalization,”
in International Conference on Learning Representations (ICLR), 2017, pp. 1–13.

[67] T. Salimans and D. P. Kingma, “Weight normalization: A simple reparameterization
to accelerate training of deep neural networks,” in Conference on Neural Information
Processing Systems (NIPS), 2016, pp. 901–909.

[68] D. V. Ruiz, B. A. Krinski, and E. Todt, “ANDA: A novel data augmentation technique
applied to salient object detection,” in International Conference on Advanced Robotics,
Dec 2019, pp. 487–492.

[69] J. Redmon, “Darknet: Open source neural networks in C,” http://pjreddie.com/darknet/,
2013-2019.

https://shafeentejani.github.io/2016-12-20/convolutional-neural-nets/
http://arxiv.org/abs/1603.07285
http://pjreddie.com/darknet/

93

[70] B. Alexe, T. Deselaers, and V. Ferrari, “Measuring the objectness of image windows,”
IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 34, no. 11, pp.
2189–2202, Nov 2012.

[71] J. Hui, “Real-time object detection with YOLO, YOLOv2 and now YOLOv3,” 2018.
[Online]. Available: https://medium.com/@jonathan_hui/real-time-object-detection-with-
yolo-yolov2-28b1b93e2088/

[72] R. Laroca, V. Barroso, M. A. Diniz, G. R. Gonçalves, W. R. Schwartz, and D. Menotti,
“Convolutional neural networks for automatic meter reading,” Journal of Electronic
Imaging, vol. 28, no. 1, p. 013023, 2019.

[73] A. Kathuria, “What’s new in YOLOv3?” 2018. [Online]. Available:
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b

[74] I. Krasin et al., “Openimages: A public dataset for large-scale multi-label and multi-class
image classification.” https://storage.googleapis.com/openimages/web/index.html, 2017.

[75] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for image recognition,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2016, pp. 770–778.

[76] D. Han, J. Kim, and J. Kim, “Deep pyramidal residual networks,” in IEEE Conference on
Computer Vision and Pattern Recognition (CVPR), July 2017, pp. 6307–6315.

[77] T. Lin, P. Dollár, R. Girshick, K. He, B. Hariharan, and S. Belongie, “Feature pyramid
networks for object detection,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), July 2017, pp. 936–944.

[78] T. Lin, P. Goyal, R. Girshick, K. He, and P. Dollár, “Focal loss for dense object detection,”
in IEEE International Conference on Computer Vision (ICCV), Oct 2017, pp. 2999–3007.

[79] J. Huang et al., “Speed/accuracy trade-offs for modern convolutional object detectors,” in
IEEE Conference on Computer Vision and Pattern Recognition, 2017, pp. 3296–3297.

[80] A. Shrivastava, R. Sukthankar, J. Malik, and A. Gupta, “Beyond skip connections:
Top-down modulation for object detection,” arXiv preprint, vol. arXiv:1612.06851, 2016.
[Online]. Available: http://arxiv.org/abs/1612.06851

[81] W. Liu, D. Anguelov, D. Erhan, C. Szegedy, S. Reed, C.-Y. Fu, and A. C. Berg, “SSD:
Single shot multibox detector,” in European Conference on Computer Vision (ECCV),
2016, pp. 21–37.

[82] C. Fu, W. Liu, A. Ranga, A. Tyagi, and A. C. Berg, “DSSD : Deconvolutional
single shot detector,” arXiv preprint, vol. arXiv:1701.06659, 2017. [Online]. Available:
http://arxiv.org/abs/1701.06659

[83] P. R. Mendes Júnior, J. M. R. Neves, A. I. Tavares, and D. Menotti, “Towards an automatic
vehicle access control system: License plate location,” in IEEE International Conference
on Systems, Man, and Cybernetics, Oct 2011, pp. 2916–2921.

[84] R. F. Prates, G. Camara-Chavez, W. R. Schwartz, and D. Menotti, “Brazilian license
plate detection using histogram of oriented gradients and sliding windows,” International
Journal of Computer Science and Information Technology, vol. 5, pp. 39–52, 2013.

https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088/
https://medium.com/@jonathan_hui/real-time-object-detection-with-yolo-yolov2-28b1b93e2088/
https://towardsdatascience.com/yolo-v3-object-detection-53fb7d3bfe6b
https://storage.googleapis.com/openimages/web/index.html
http://arxiv.org/abs/1612.06851
http://arxiv.org/abs/1701.06659

94

[85] A. H. Ashtari, M. J. Nordin, and M. Fathy, “An iranian license plate recognition system
based on color features,” IEEE Transactions on Intelligent Transportation Systems, vol. 15,
no. 4, pp. 1690–1705, Aug 2014.

[86] M. S. Sarfraz, A. Shahzad, M. A. Elahi, M. Fraz, I. Zafar, and E. A. Edirisinghe, “Real-time
automatic license plate recognition for CCTV forensic applications,” Journal of Real-Time
Image Processing, vol. 8, no. 3, pp. 285–295, Sep 2013.

[87] R. Panahi and I. Gholampour, “Accurate detection and recognition of dirty vehicle plate
numbers for high-speed applications,” IEEE Transactions on Intelligent Transportation
Systems, vol. 18, no. 4, pp. 767–779, April 2017.

[88] S. Azam and M. M. Islam, “Automatic license plate detection in hazardous condition,”
Journal of Visual Communication and Image Representation, vol. 36, pp. 172–186, 2016.

[89] M.A.Rafique,W. Pedrycz, andM. Jeon, “Vehicle license plate detection using region-based
convolutional neural networks,” Soft Computing, June 2017.

[90] F. D. Kurpiel, R. Minetto, and B. T. Nassu, “Convolutional neural networks for license
plate detection in images,” in IEEE International Conference on Image Processing (ICIP),
Sept 2017, pp. 3395–3399.

[91] R. Polishetty, M. Roopaei, and P. Rad, “A next-generation secure cloud-based deep learning
license plate recognition for smart cities,” in IEEE International Conference on Machine
Learning and Applications (ICMLA), Dec 2016, pp. 286–293.

[92] Z. Selmi, M. B. Halima, and A. M. Alimi, “Deep learning system for automatic license
plate detection and recognition,” in IAPR International Conference on Document Analysis
and Recognition (ICDAR), vol. 01, Nov 2017, pp. 1132–1138.

[93] D. Menotti, G. Chiachia, A. X. Falcão, and V. J. O. Neto, “Vehicle license plate recognition
with random convolutional networks,” in Conference on Graphics, Patterns and Images
(SIBGRAPI), Aug 2014, pp. 298–303.

[94] Y. Yang, D. Li, and Z. Duan, “Chinese vehicle license plate recognition using kernel-based
extreme learning machine with deep convolutional features,” IET Intelligent Transport
Systems, vol. 12, no. 3, pp. 213–219, 2018.

[95] J. Zhuang, S. Hou, Z.Wang, and Z.-J. Zha, “Towards human-level license plate recognition,”
in European Conference on Computer Vision (ECCV), 2018, pp. 314–329.

[96] L. Chen, G. Papandreou, I. Kokkinos, K. Murphy, and A. L. Yuille, “DeepLab: Semantic
image segmentation with deep convolutional nets, atrous convolution, and fully connected
CRFs,” IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 40, no. 4,
pp. 834–848, April 2018.

[97] C. Szegedy, V. Vanhoucke, S. Ioffe, J. Shlens, and Z. Wojna, “Rethinking the inception
architecture for computer vision,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2016, pp. 2818–2826.

[98] Q. Lu, W. Zhou, L. Fang, and H. Li, “Robust blur kernel estimation for license plate images
from fast moving vehicles,” IEEE Transactions on Image Processing, vol. 25, no. 5, pp.
2311–2323, May 2016.

95

[99] J. Fang, Y. Yuan, W. Ji, P. Tang, and Y. Zhao, “Licence plate images deblurring with
binarization threshold,” in IEEE International Conference on Imaging Systems and
Techniques (IST), Sept 2015, pp. 1–6.

[100] C. Song and X. Lin, “Blurred license plate recognition based on single snapshot from
drive recorder,” in IEEE International Conference on Communications (ICC), June 2015,
pp. 7108–7113.

[101] P. Svoboda, M. Hradiš, L. Maršík, and P. Zemcík, “CNN for license plate motion
deblurring,” in IEEE International Conference on Image Processing (ICIP), Sept 2016,
pp. 3832–3836.

[102] OpenALPR Software Solutions, “OpenALPR Library,” http://www.openalpr.com/, 2019.

[103] G. J. Hsu andC. Chiu, “A comparison study on real-time trackingmotorcycle license plates,”
in IEEE Image, Video, and Multidimensional Signal Processing Workshop (IVMSP), July
2016, pp. 1–5.

[104] A. G. Hochuli, L. S. Oliveira, A. S. Britto Jr., and R. Sabourin, “Segmentation-free
approaches for handwritten numeral string recognition,” in International Joint Conference
on Neural Networks (IJCNN), July 2018, pp. 1–8.

[105] ——, “Handwritten digit segmentation: Is it still necessary?” Pattern Recognition, vol. 78,
pp. 1–11, 2018.

[106] AlexeyAB, “YOLOv3 and YOLOv2 for Windows and Linux,” 2017-2019. [Online].
Available: https://github.com/AlexeyAB/darknet

[107] G. Hsu, J. Chen, and Y. Chung, “AOLP database,” http://aolpr.ntust.edu.tw/lab/, 2013.

[108] M. Weber, “Caltech Cars dataset,” http://www.vision.caltech.edu/Image_Datasets/cars_
markus/cars_markus.tar, 1999.

[109] V. Srebrić, “EnglishLP database,” http://www.zemris.fer.hr/projects/LicensePlates/english/
baza_slika.zip, 2003.

[110] L. Dlagnekov and S. Belongie, “UCSD/Calit2 car license plate, make and model database,”
http://vision.ucsd.edu/belongie-grp/research/carRec/car_data.html, 2005.

[111] B. Shi, X. Bai, and C. Yao, “An end-to-end trainable neural network for image-based
sequence recognition and its application to scene text recognition,” IEEE Transactions on
Pattern Analysis and Machine Intelligence, vol. 39, no. 11, pp. 2298–2304, Nov 2017.

[112] Y. Liu, H. Huang, J. Cao, and T. Huang, “Convolutional neural networks-based intelligent
recognition of Chinese license plates,” Soft Computing, vol. 22, no. 7, pp. 2403–2419,
Apr 2018.

[113] J. Wang, H. Huang, X. Qian, J. Cao, and Y. Dai, “Sequence recognition of chinese license
plates,” Neurocomputing, vol. 317, pp. 149–158, 2018.

[114] G. Bradski, “The OpenCV Library,” Dr. Dobb’s Journal of Software Tools, 2000.

[115] L. Dlagnekov, “Video-based car surveillance: License plate, make, and model recognition,”
Master’s thesis, University of California, San Diego, 2005.

http://www.openalpr.com/
https://github.com/AlexeyAB/darknet
http://aolpr.ntust.edu.tw/lab/
http://www.vision.caltech.edu/Image_Datasets/cars_markus/cars_markus.tar
http://www.vision.caltech.edu/Image_Datasets/cars_markus/cars_markus.tar
http://www.zemris.fer.hr/projects/LicensePlates/english/baza_slika.zip
http://www.zemris.fer.hr/projects/LicensePlates/english/baza_slika.zip
http://vision.ucsd.edu/belongie-grp/research/carRec/car_data.html

96

[116] G. R. Gonçalves, S. P. G. da Silva, D. Menotti, and W. R. Schwartz, “SSIG-SegPlate
database,” http://www.ssig.dcc.ufmg.br/ssig-segplate-database/, 2016.

[117] Z. Xu, W. Yang, A. Meng, N. Lu, H. Huang, C. Ying, and L. Huang, “Towards end-to-end
license plate detection and recognition: A large dataset and baseline,” in European
Conference on Computer Vision (ECCV), 2018, pp. 261–277.

[118] M. Molina-Moreno, I. González-Díaz, and F. D. de María, “Efficient scale-adaptive license
plate detection system,” IEEE Transactions on Intelligent Transportation Systems, pp.
1–13, 2018.

[119] H. Xiang, Y. Yuan, Y. Zhao, and Z. Fu, “License plate detection based on fully convolutional
networks,” Journal of Electronic Imaging, vol. 26, pp. 1–7, 2017.

[120] H. Xiang, Y. Zhao, Y. Yuan, G. Zhang, and X. Hu, “Lightweight fully convolutional
network for license plate detection,” Optik, vol. 178, pp. 1185–1194, 2019.

[121] X. Zhang, N. Gu, H. Ye, and C. Lin, “Vehicle license plate detection and recognition
using deep neural networks and generative adversarial networks,” Journal of Electronic
Imaging, vol. 27, pp. 1–11, 2018.

[122] V. Srebrić, “Postupci za poboljšanje kontrasta sivih slika,” Sept 2003, University of Zagreb.
Original document in Croatian.

[123] M. Wafy and A. M. M. Madbouly, “Efficient method for vehicle license plate identification
based on learning a morphological feature,” IET Intelligent Transport Systems, vol. 10,
no. 6, pp. 389–395, 2016.

[124] K. Lin, H. Tang, and T. S. Huang, “Robust license plate detection using image saliency,”
in IEEE International Conference on Image Processing (ICIP), Sep. 2010, pp. 3945–3948.

[125] R. Qian, B. Zhang, Y. Yue, Z. Wang, and F. Coenen, “Robust chinese traffic sign detection
and recognition with deep convolutional neural network,” in International Conference on
Natural Computation (ICNC), Aug 2015, pp. 791–796.

[126] J. Tian, G. Wang, J. Liu, and Y. Xia, “License plate detection in an open environment by
density-based boundary clustering,” Journal of Electronic Imaging, vol. 26, pp. 1–11,
2017.

[127] Y. Wu and J. Li, “License plate recognition using deep fcn,” in Cognitive Systems and
Signal Processing, 2017, pp. 225–234.

[128] L. Yang, P. Luo, C. C. Loy, and X. Tang, “A large-scale car dataset for fine-grained
categorization and verification,” in IEEE Conference on Computer Vision and Pattern
Recognition (CVPR), June 2015, pp. 3973–3981.

[129] A. Wong, M. J. Shafiee, F. Li, and B. Chwyl, “Tiny SSD: A tiny single-shot detection deep
convolutional neural network for real-time embedded object detection,” arXiv preprint,
vol. arXiv:1802.06488, 2018. [Online]. Available: http://arxiv.org/abs/1802.06488

[130] M. K. Saini and S. Saini, “Multiwavelet transform based license plate detection,” Journal
of Visual Communication and Image Representation, vol. 44, pp. 128–138, 2017.

http://www.ssig.dcc.ufmg.br/ssig-segplate-database/
http://arxiv.org/abs/1802.06488

97

[131] I. Türkyılmaz and K. Kaçan, “License plate recognition system using artificial neural
networks,” ETRI Journal, vol. 39, no. 2, pp. 163–172, 2017.

[132] Brazil Monitor, “New mercosur vehicles license plate come into effect in sep. 2018,”
2018. [Online]. Available: http://www.brazilmonitor.com/index.php/2018/04/27/new-
mercosur-vehicles-license-plate-come-into-effect-in-sep-2018/

[133] E. Severo, R. Laroca, C. S. Bezerra, L. A. Zanlorensi, D. Weingaertner, G. Moreira, and
D. Menotti, “A benchmark for iris location and a deep learning detector evaluation,” in
International Joint Conference on Neural Networks (IJCNN), July 2018, pp. 1–7.

[134] D. R. Lucio, R. Laroca, E. Severo, A. S. Britto Jr., and D. Menotti, “Fully convolutional
networks and generative adversarial networks applied to sclera segmentation,” in IEEE
International Conference on Biometrics Theory, Applications and Systems (BTAS), Oct
2018, pp. 1–7.

[135] C. S. Bezerra, R. Laroca, D. R. Lucio, E. Severo, L. F. Oliveira, A. S. Britto Jr., and
D.Menotti, “Robust iris segmentation based on fully convolutional networks and generative
adversarial networks,” in Conference on Graphics, Patterns and Images (SIBGRAPI), Oct
2018, pp. 281–288.

[136] L. A. Zanlorensi, E. Luz, R. Laroca, A. S. Britto Jr., L. S. Oliveira, and D. Menotti, “The
impact of preprocessing on deep representations for iris recognition on unconstrained
environments,” in Conference on Graphics, Patterns and Images (SIBGRAPI), Oct 2018,
pp. 289–296.

[137] G. R. Gonçalves, M. A. Diniz, R. Laroca, D. Menotti, and W. R. Schwartz, “Multi-task
learning for low-resolution license plate recognition,” in Iberoamerican Congress on
Pattern Recognition (CIARP), Oct 2019, pp. 251–261.

[138] I. O. Oliveira, R. Laroca, D. Menotti, K. V. O. Fonseca, and R. Minetto, “Vehicle
re-identification: exploring feature fusion using multi-stream convolutional networks,”
arXiv preprint, vol. arXiv:1911.05541, pp. 1–10, 2019.

[139] R. Laroca, L. A. Zanlorensi, G. R. Gonçalves, E. Todt, W. R. Schwartz, and D. Menotti,
“An efficient and layout-independent automatic license plate recognition system based on
the YOLO detector,” IET Intelligent Transport Systems, vol. 15, no. 4, pp. 483–503, 2021.

http://www.brazilmonitor.com/index.php/2018/04/27/new-mercosur-vehicles-license-plate-come-into-effect-in-sep-2018/
http://www.brazilmonitor.com/index.php/2018/04/27/new-mercosur-vehicles-license-plate-come-into-effect-in-sep-2018/

	Introduction
	Problem Statement
	Objectives
	Contributions
	Outline

	Theoretical Foundation
	Evaluation Metrics
	Deep Learning
	Convolutional Neural Networks
	Data Augmentation

	YOLO
	YOLOv2
	YOLOv3

	Related Work
	License Plate Detection
	Character Recognition
	License Plate Recognition
	Miscellaneous
	Final Remarks

	Proposal
	UFPR-ALPR Dataset
	Proposed Approach
	Vehicle Detection
	License Plate Detection and Layout Classification
	License Plate Recognition

	Experimental Results
	Datasets
	Caltech Cars
	EnglishLP
	UCSD-Stills
	ChineseLP
	AOLP
	OpenALPR-EU
	SSIG
	Discussion

	Evaluation Protocol
	Results
	Vehicle Detection
	License Plate Detection and Layout Classification
	License Plate Recognition (Overall Evaluation)

	Conclusions
	Future Work
	Publications

	References

