Multi-Feature Aggregation in Diffusion Models for Enhanced Face Super-Resolution

Marcelo dos Santos¹, Rayson Laroca^{1,2}, Rafael Ribeiro³, João Neves⁴, David Menotti¹

¹ Federal University of Paraná, Curitiba, Brazil
² Pontifical Catholic University of Paraná, Curitiba, Brazil
³ Brazilian Federal Police, Brasília, Brazil
⁴ University of Beira Interior, Covilhã, Portugal

Contents

Introduction

Proposed Method

Experiments and Results

Introduction

III-Posed Nature of SR Problem

Difficulty in recovering details (eyeglasses, beards, mustaches) and maintaining a reliable identity.

Introduction

III-Posed Nature of SR Problem

Difficulty in recovering details (eyeglasses, beards, mustaches) and maintaining a reliable identity.

Limitations of Existing Approaches

 Attribute-assisted super-resolution: require classifiers or manual extraction of features (inefficient).

Introduction

III-Posed Nature of SR Problem

Difficulty in recovering details (eyeglasses, beards, mustaches) and maintaining a reliable identity.

Limitations of Existing Approaches

- Attribute-assisted super-resolution: require classifiers or manual extraction of features (inefficient).
- It is necessary to automatically capture features.
 - Facial proportions, shapes and other more abstract features.

Proposed Method

Figure: Overview of the proposed method.

14

Diffusion Models

Diffusion Models

Loss function

 $\min_{\theta} \mathbb{E}_{t \sim \mathcal{U}[0,T]} \mathbb{E}_{\mathbf{x}_0 \sim p(\mathbf{x}_0)} \mathbb{E}_{\mathbf{x}(t) \sim p_t(\mathbf{x}(t)|\mathbf{x}(0)} \left[\|s_{\theta}(\mathbf{x}(t), \mathbf{y}, \mathbf{F}_M, t) - \nabla_{\mathbf{x}(t)} \log p(\mathbf{x}(t)|\mathbf{x}(0))\|_2^2 \right]$

(1)

Face Reconstruction

Figure: First row: original HR images. Second row: synthetic HR images.

Datasets

- **FFHQ**: Used for model training.
- **CelebA**: Used for testing with 500 identities.
- ▶ Quis-Campi: Real-world surveillance dataset with 90 identities.

Datasets

- **FFHQ**: Used for model training.
- **CelebA**: Used for testing with 500 identities.
- ▶ Quis-Campi: Real-world surveillance dataset with 90 identities.

Algorithm Parameters

- Noise levels: $\sigma_{\min} = 0.001$, $\sigma_{\max} = 348$.
- LR images: $8 \times$ downsampling and bicubic upsampling to 128×128 .
- **>** SDE solved with 2,000 steps for image reconstruction.

Datasets

- **FFHQ**: Used for model training.
- **CelebA**: Used for testing with 500 identities.
- ▶ Quis-Campi: Real-world surveillance dataset with 90 identities.

Algorithm Parameters

- Noise levels: $\sigma_{\min} = 0.001$, $\sigma_{\max} = 348$.
- LR images: $8 \times$ downsampling and bicubic upsampling to 128×128 .
- **>** SDE solved with 2,000 steps for image reconstruction.

Feature Extraction and Recognition

- 512-dimensional feature vectors using AdaFace with ResNet backbone.
- Cosine similarity metric for image comparison.
- Recognition by comparing SR images against gallery images.

Datasets

- **FFHQ**: Used for model training.
- **CelebA**: Used for testing with 500 identities.
- ▶ Quis-Campi: Real-world surveillance dataset with 90 identities.

Algorithm Parameters

- Noise levels: $\sigma_{\min} = 0.001$, $\sigma_{\max} = 348$.
- LR images: $8 \times$ downsampling and bicubic upsampling to 128×128 .
- **>** SDE solved with 2,000 steps for image reconstruction.

Feature Extraction and Recognition

- 512-dimensional feature vectors using AdaFace with ResNet backbone.
- Cosine similarity metric for image comparison.
- Recognition by comparing SR images against gallery images.
- Comparison with State-of-the-Art
 - Compared against diffusion models algorithms SR3, SDE-SR, IDM and SRDG.

SR Method	AUC	Rank-1 (%)	Rank-5 (%)	Rank-10 (%)
LR	0.885	27.00	41.40	51.60
SR3	0.936	45.60	62.00	71.00
SDE-SR	0.933	48.60	66.60	72.40
FASR (Ours)	0.946	52.80	70.00	76.00

Tabela: The 1:1 verification and 1:N identification results obtained using the AdaFace recognition model through super-resolution on the CelebA dataset.

SR Method	AUC	Rank-1(%)	Rank-5(%)	Rank-10(%)
LR	0.816	23.78	46.89	58.67
IDM	0.885	28.22	56.44	70.00
SR3	0.914	45.78	69.56	79.77
SDE-SR	0.917	50.00	72.67	81.56
SRDG	0.920	49.33	73.11	82.00
FASR (Ours)	0.917	51.33	72.44	80.00

Tabela: The 1:1 verification and 1:N identification results obtained using the AdaFace recognition model through super-resolution on the Quis-Campi dataset.

Figure: Comparison of low-resolution (LR), super-resolution (SR) and ground gruth (GT) images from the Quis-Campi dataset.

Figure: Comparison of low-resolution (LR), super-resolution (SR) and ground gruth (GT) images from the Quis-Campi dataset.

Figure: Some failure cases of the proposed approach.

We introduced FASR, an algorithm that integrates multi-features and a reference LR image into diffusion models to generate SR images.

We introduced FASR, an algorithm that integrates multi-features and a reference LR image into diffusion models to generate SR images.

 A key advantage of our algorithm is that it utilizes automatically extracted features.

- We introduced FASR, an algorithm that integrates multi-features and a reference LR image into diffusion models to generate SR images.
- A key advantage of our algorithm is that it utilizes automatically extracted features.
- Our algorithm preserves individuals' identities more effectively than other methods.

- We introduced FASR, an algorithm that integrates multi-features and a reference LR image into diffusion models to generate SR images.
- A key advantage of our algorithm is that it utilizes automatically extracted features.
- Our algorithm preserves individuals' identities more effectively than other methods.
- FASR produces high-quality images with enhanced face symmetry, reduced noise and minimized distortions in face attributes.

- We introduced FASR, an algorithm that integrates multi-features and a reference LR image into diffusion models to generate SR images.
- A key advantage of our algorithm is that it utilizes automatically extracted features.
- Our algorithm preserves individuals' identities more effectively than other methods.
- FASR produces high-quality images with enhanced face symmetry, reduced noise and minimized distortions in face attributes.
- We achieved state-of-the-art results for recognition metrics on the CelebA and Quis-Campi datasets.

14/14

