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Theoretical Background

Stochastic Differential Equations
Equivalence of SMLD and DDPM models with SDEs

Diffusion models
Score Matching with Langevin Dynamics (SMLD)
Denoising Diffusion Probabilistic Models (DDPM)

Song et al. [1] generalizes diffusion models to SDEs
SDE-VE (SMLD)
SDE-VEcs (correction step)
SDE-VP (DDPM)
SDE-subVP
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Theoretical Background

Super-Resolution Loss function

min
θ

Et∼U [0,T ]Ex0∼p(x0)Ex(t)∼pt(x(t)|x(0)∥sθ(x(t),y, t)−∇x(t) log p(x(t)|x(0))∥22
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Super-Resolution Architecture

U-Net architecture with ResNet blocks and self-attention layers
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How it works

y xT =⇒ xT−1
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Theoretical Background

How it works

y x1 =⇒ x0
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Theoretical Background

Algorithm

Algorithm 1 Predictor-Corrector (PC) sampling

N: Number of discretization steps for the reverse-time SDE
M: Number of correction steps
1: Initialize xT ∼ pT (x)
2: for i = N − 1 to 0 do
3: xi ← Predictor(xi+1)
4: for j = 1 to M do
5: xi ← Corrector(xi) ▷ Internal parameter r related to image smoothness
6: end for
7: end for
8: return x0
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Image smoothness

Original HR SR1 SR2 SR3

Figure: Samples obtained increasing r from left to right. For Samples SR1, SR2 and SR3

the values of r are 0.10, 0.30 and 0.52 for the first row and 0.12, 0.32 and 0.39 for the
second row. Higher values of r yield smoother images and larger values of PSNR
(on average).
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Experiments

Training dataset: Flickr - Faces - HQ (FFHQ)

LR images: obtained by downsampling HR images by a factor of 8
Testing dataset: CelebA-HQ
Features extraction of HR and SR images with VGG-Face
Metrics: SSIM, PSNR and Consistency

Cosine similarity CS between feature vectors

Influence of image smoothness on PSNR and CS metrics
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Experiments and Results

Results
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Figure: CS and PSNR as a function of r (sampling parameter). Higher values of r
produce smoother images (with higher values of PSNR) but can decrease the value of CS
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Figure: Cross-plot between CS and PSNR. The correlation coefficient between CS and
PSNR is −0.6591, implying that higher values of PSNR do not always result in higher
values of CS.
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Experiments and Results

Results
Original Input GFPGAN (CVPR) SPARNET (TIP) SR3 (TPAMI) SDE-VP SDE-subVP SDE-VE SDE-VEcs

Figure: Super-resolution results. Our methods are shown in red (the best) and blue.
SDE-VE provides more natural and detailed images than other methods.
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Experiments and Results

Results

Model PSNR ↑ SSIM ↑ CONSISTENCY ↓ CS ↑
GFP-GAN [2] (CVPR) 21.5326± 1.5273 0.6006± 0.0709 37.2256± 12.4622 0.8689± 0.0581
SPARNet [3] (TIP) 24.3686± 1.7844 0.7223± 0.0679 13.6512± 4.9063 0.9307± 0.0301
SR3 [4] (TPAMI) 22.9581± 1.8370 0.6605± 0.0758 1.3715± 0.7904 0.9370± 0.0244
SDE-VP 22.7171± 1.8107 0.6448± 0.0787 0.1074± 0.0592 0.9330± 0.0262
SDE-subVP 22.6455± 1.8047 0.6428± 0.0797 0.1433± 0.1212 0.9300± 0.0261
SDE-VE 23.5101± 1.9492 0.6879± 0.0797 0.0454± 0.0357 0.9443± 0.0222

Table: PSNR, SSIM, Consistency and CS on 16× 16 → 128× 128 face super-resolution.
The best result for CS is highlighted with red.
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Results

SCface - Surveillance Cameras Face Database - https://www.scface.org/

Original

Original’

SR

Reference

Increase in CS from 0.6415± 0.0633 to 0.6983± 0.0827.
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Conclusions

Conclusions and future works

SDEs can be successfully applied to SR problems.

It was demonstrated the superior results of SDE-VE SR algorithm when using
CS and Consistency metrics and qualitative analysis.
The SDE-VE SR algorithm has potential to be used for the recognition tasks
in surveillance scenarios due to its noise removal property.
The influence of the image smoothness on PSNR values and recognition
accuracy will be further explored in future works.
Diffusion models and SDE based algorithms are computationally expensive.
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