
Enhancing License Plate Super-Resolution: A Layout-Aware and Character-Driven Approach

Valfride Nascimento*, Rayson Laroca^{†,*}, Rafael O. Ribeiro[‡], William Robson Schwartz[§], David Menotti^{*}

Federal University of Paraná, Curitiba, Brazil [†]Pontifical Catholic University of Paraná, Curitiba, Brazil [‡]Brazilian Federal Police, Brasília, Brazil § Federal University of Minas Gerais, Belo Horizonte, Brazil

`{vwnascimento.menotti}@inf.ufpr_[†]rayson@ppqia.pucpr.br^{_‡}rafael.ror@pf.gov.br_[§]william@dcc.ufmg.br

Summary

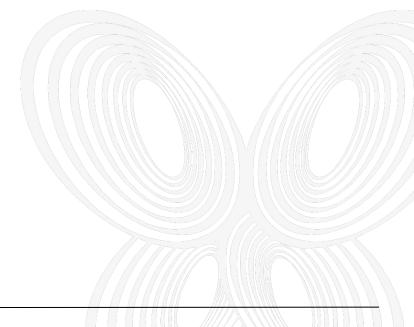
- 1. Problem and Motivation
- 2. Contributions
- 3. Layout and Character Oriented Focal Loss
- 4. Architecture
- 5. Datasets
- 6. Quantitative Results
- 7. Qualitative Results
- 8. Ablation Study
- 9. Final Remarks

Problem and Motivation

• Low-resolution license plates are common in real-world surveillance.

Problem and Motivation

Blurred and low-quality images reduce license plate recognition (LPR) performance


Problem and Motivation

• Need for an approach that improves character reconstruction in low-resolution scenarios.

• Novel Loss Function: Layout and Character Oriented Focal Loss (LCOFL).

• Novel Loss Function: Layout and Character Oriented Focal Loss (LCOFL).

 Architecture improvements: Incorporation of deformable convolutions and shared weights in attention modules.

• Novel Loss Function: Layout and Character Oriented Focal Loss (LCOFL).

 Architecture improvements: Incorporation of deformable convolutions and shared weights in attention modules.

• **Training Strategy:** A GAN-based training approach with OCR-guided discriminator for generation of more realistic and recognizable LP images.

• **Novel Loss Function:** Layout and Character Oriented Focal Loss (LCOFL).

 Architecture improvements: Incorporation of deformable convolutions and shared weights in attention modules.

• **Training Strategy:** A GAN-based training approach with OCR-guided discriminator for generation of more realistic and recognizable LP images.

• **Real-World Images:** Preliminary experiments with real data.

$$L_{C} = -\frac{1}{K} \sum_{k=1}^{K} w_{k} \log p_{t}(y_{k}^{GT} | x_{k})$$

• Weighted cross-entropy to classify characters.

$$L_{C} = -\frac{1}{K} \sum_{k=1}^{K} w_{k} \log p_{t}(y_{k}^{GT} | x_{k})$$

- Weighted cross-entropy to classify characters.
- Penalizes misclassification from structural similarities.

$$L_{C} = -\frac{1}{K} \sum_{k=1}^{K} w_{k} \log p_{t}(y_{k}^{GT} | x_{k})$$

- Weighted cross-entropy to classify characters.
- Penalizes misclassification from structural similarities.
- Weights are updated based on confusion matrix after each epoch.

$$L_P = \sum_{i=1}^{K} \left[D(x_k) \cdot A(y_k^{GT}) + \cdot A(x_k) \cdot D(y_k^{GT}) \right]$$
$$D(c) = \begin{cases} \beta & \text{if } c \text{ is a digit} \\ 0 & \text{otherwise} \end{cases}$$
$$A(c) = \begin{cases} \beta & \text{if } c \text{ is a letter} \\ 0 & \text{otherwise} \end{cases}$$

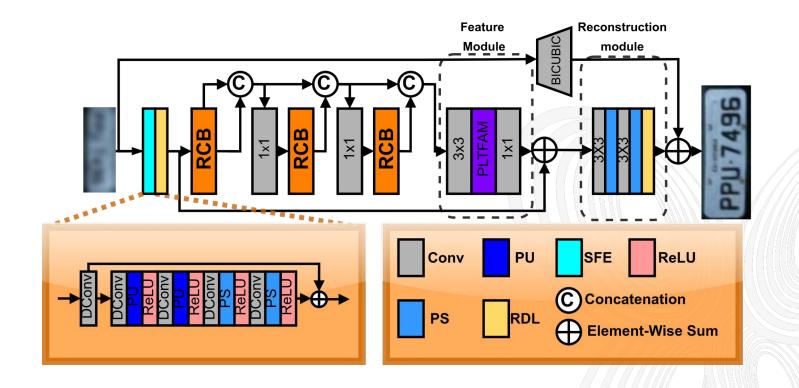
• Enforces the correct positional arrangement of letters and digits in the LP layout.

$$L_P = \sum_{i=1}^{K} \left[D(x_k) \cdot A(y_k^{GT}) + \cdot A(x_k) \cdot D(y_k^{GT}) \right]$$
$$D(c) = \begin{cases} \beta & \text{if } c \text{ is a digit} \\ 0 & \text{otherwise} \end{cases}$$
$$A(c) = \begin{cases} \beta & \text{if } c \text{ is a letter} \\ 0 & \text{otherwise} \end{cases}$$

- Enforces the correct positional arrangement of letters and digits in the LP layout.
- Penalizes errors where a letter is reconstructed as a digit, or vice versa.

$$L_S = \frac{1 - SSIM(S_i, H_i)}{2}$$

• Guides the network to maintain LP layout and structural details.


$$L_S = \frac{1 - SSIM(S_i, H_i)}{2}$$

- Guides the network to maintain LP layout and structural details.
- Penalizes deviations in texture, structure, and contrast.

Network Architecture

Architecture

Datasets

RodoSol-ALPR[1]

- Input Resolution (LR): 16×48 *px*;
- **Output Resolution (HR):** 32×96 *px*.

Preliminary Real-World Images

- Input Resolution (LR): 16×48 px;
- **Output Resolution (HR):** 32×96 *px*.

[1] R. Laroca, E. V. Cardoso, D. R. Lucio, V. Estevam, and D. Menotti, "On the Cross-dataset Generalization in License Plate Recognition" in International Conference on Computer Vision Theory and Applications (VISAPP), Feb 2022, pp. 166-178.

Quantitative Results

		# Correct Characters						
Test Images		RodoSol-ALPF	2	Preliminary Real-World Images				
	All	≥ 6	≥ 5	All	≥ 6	≥ 5		
HR (No SR)	98.5%	99.9%	99.9%	90.6%	98.7%	100%		
LR (No SR)	0.8%	4.1%	11.7%	9.9%	28.0%	56.2%		
Proposed model & baselines	tested							
LR + SR (SR3 [6])	43.1%	82.2%	82.2%	31.7%	63.7%	80.1%		
<i>LR</i> + <i>SR (PLNET</i> [5])	39.0%	59.9%	74.2%	36.3%	67.2%	82.5%		
LR + SR (Proposed)	49.8%	71.2%	83.3%	39.5%	70.2%	83.1%		

[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

		# Correct Characters						
Test Images	1	RodoSol-ALPR		Preliminary Real-World Images				
iest inages	All	≥ 6	≥ 5	All	≥ 6	≥ 5		
HR (No SR)	98.5%	99.9%	99.9%	90.6%	98.7%	100%		
LR (No SR)	0.8%	4.1%	11.7%	9.9%	28.0%	56.2%		
Proposed model & baselines	tested							
LR + SR (SR3 [6])	43.1%	82.2%	82.2%	31.7%	63.7%	80.1%		
<i>LR</i> + <i>SR (PLNET</i> [5])	39.0%	59.9%	74.2%	36.3%	67.2%	82.5%		
LR + SR (Proposed)	49.8%	71.2%	83.3% /	39.5%	70.2%	83.1%		

[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

		# Correct Characters						
Test Images		RodoSol-ALPR			Preliminary Real-World Images			
	All	≥ 6	≥ 5	All	≥ 6	≥ 5		
HR (No SR)	98.5%	99.9%	99.9%	90.6%	98.7%	100%		
LR (No SR)	0.8%	4.1%	11.7%	9.9%	28.0%	56.2%		
Proposed model & baselines	tested							
LR + SR (SR3 [6])	43.1%	82.2%	82.2%	31.7%	63.7%	80.1%		
<i>LR</i> + <i>SR (PLNET</i> [5])	39.0%	59.9%	74.2%	36.3%	67.2%	82.5%		
LR + SR (Proposed)	49.8%	71.2%	83.3%	39.5%	70.2%	83.1%		

[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

Qualitative Results

[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

Qualitative Results

[5] Nascimento, V., Laroca, R., Lambert, J.D.A., Schwartz, W.R. and Menotti, D., "Super-resolution of license plate images using attention modules and sub-pixel convolution layers." In Computers & Graphics, 2023, 113, pp.69-76.

Ablation Study

Recognition Rates (RR) Achieved With Different Components Integrated Into The Proposed Approach

Approach	RR
Proposed (w/o ArchMod, GAN-style, and LCOFL)	39.0%
Proposed (w/o LCOFL)	45.9%
Proposed (w/o ArchMod and LCOFL)	47.6%
Proposed (w/o GAN-style and LCOFL)	47.7%
Proposed (w/o ArchMod and GAN-style)	48.2%
Proposed (w/o ArchMod)	49.2%
Proposed (w/o GAN-style)	49.4%
Proposed	49.8%

Final Remarks

• Our approach involved the implementation of LCOFL for character reconstruction according with the LP layout.

• LCOFL effectively mitigates confusions between structurally similar characters.

Modifications to the archicture and training procedure led to state of the art results.

Final Remarks - Future Works

• Conduct experiments on various LP layouts.

 Complete the paired real-world LR/HR dataset and make it publicly accessible for researchers.

• Ensure the dataset supports multi-image super-resolution.

THANK YOU!

