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Introduction

Scope: Vehicle Color Recognition (VCR).
Problem: Lack of adverse conditions in datasets.
Approach: UFPR Vehicle Color Recognition (UFPR-VCR) dataset.

(a) Chen et al. [1] dataset. (b) UFPR-VCR dataset.

Figure: Images in the proposed dataset (b) depict significantly more challenging
scenes than those in (a).
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The UFPR-VCR dataset

Data: 10,039 images; 9,502 unique vehicles; 11 colors.
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Figure: Distribution of vehicle colors in the UFPR-VCR dataset.
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The UFPR-VCR dataset

Table: ALPR datasets used to create UFPR-VCR dataset.

Dataset Year Images Resolution Viewpoint

UFOP 2011 377 800×600 Frontal/Rear
SSIG-SigPlate 2016 2,000 1920×1080 Frontal
OpenALPR-BR 2016 115 Various Frontal/Rear
UFPR-ALPR 2018 4,500 1920×1080 Frontal/Rear
Vehicle-Rear∗ 2021 445∗ 1280×720 Rear
RodoSol-ALPR 2022 20,000 1280×720 Frontal/Rear

∗We used only the portion of Vehicle-Rear that includes labels for the license plates.
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The UFPR-VCR dataset

Development: I) preprocessing; II) image selection; and III) annotations.

(a) Red (b) Red (c) Blue

(d) Multicolored (e) White (f) White

Figure: Examples of discarded images due to inability to recognize the vehicle
color. The accurate color annotation is displayed bellow each image.
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Experiments

Description: evaluate four deep learning models on the proposed dataset
and on Chen et al. dataset.

Methodology:

Models;

Split;

Data augmentation;

Training protocols;

Evaluation metrics.
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Experiments

Table: Global metrics (%) on Chen et al. dataset (averaged over five runs).

Model Top-1 Top-2 Precision Recall F1

EfficientNet-V2 [5] 84.6 93.4 84.5 84.6 84.4
MobileNet-V3 [4] 90.6 96.7 91.7 90.6 91.0
ResNet-34 [3] 89.0 95.6 91.1 89.0 89.9
ViT b16 [2] 92.8 98.0 95.3 92.8 93.9
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Experiments

Table: Global metrics (%) on UFPR-VCR dataset (averaged over five runs).

Protocol Model Top-1 Top-2 Precision Recall F1

(i)

EfficientNet-V2 [5] 51.2 65.3 65.2 51.2 53.5
MobileNet-V3 [4] 50.5 65.4 65.8 50.5 53.1
ResNet-34 [3] 49.1 60.3 64.3 49.1 52.4
ViT b16 [2] 59.2 71.3 76.0 59.2 62.8

(ii)

EfficientNet-V2 [5] 55.4 69.5 43.5 55.4 44.6
MobileNet-V3 [4] 59.3 73.3 42.6 59.4 45.2
ResNet-34 [3] 59.3 72.9 47.8 59.3 49.9
ViT b16 [2] 66.2 79.7 55.7 66.2 57.8
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Experiments

Colors consistently identified: yellow, white and red.
Colors that posed challenges: brown, blue, green and gray.

Nighttime images: 32.4% top-1 errors.

GT: White

Pred: Silver

GT: Red

Pred: White

GT: Black

Pred: Gray

Figure: Examples of nighttime images that were misclassified.
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Conclusions

Observed: shortcomings in existing Vehicle Color Recognition (VCR)
datasets.

Main contribution: UFPR-VCR proposal and benchmark.

Future work: I) improve nighttime scene performance; and II) enrich the
dataset for fine-grained vehicle classification.
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