Improving Small Drone Detection Through Multi-Scale Processing and Data Augmentation

Rayson Laroca^{1,2}, Marcelo dos Santos², and David Menotti²

¹Pontifical Catholic University of Paraná, Curitiba, Brazil ²Federal University of Paraná, Curitiba, Brazil

8th WOSDETC Drone-vs-Bird Detection Data Competition @IJCNN25

CERTH CENTRE FOR RESEARCH & TECHNOLOGY HELLAS

Datasets – DDS (Official Challenge Dataset)

• 77 videos, with high variability in several aspects:

Datasets – DDS (Official Challenge Dataset)

• How should the 77 videos be optimally split into training and validation subsets?

- How should the 77 videos be optimally split into training and validation subsets?
 - We allocated 70 videos for training and 7 for validation;
 - We manually curated the dataset to ensure the validation set included videos with diverse drone distances, image resolutions, backgrounds, and environmental conditions;
 - **③** We performed **preliminary experiments** with different object detectors;
 - **4** We implemented an **iterative refinement process**:
 - This involved strategically swapping videos between the training and validation sets, guided by empirical observations of model performance while maintaining the intended diversity of the validation set.

• Three additional datasets:

- USC-GRAD-STDdb
- "Dataset2"
- DUT Anti-UAV
- While these datasets include their own subdivisions for training, testing, and validation, we utilized all images for training our model.
 - The validation set consisted exclusively of scenarios from the target competition.

Datasets – USC-GRAD-STDdb

- 115 videos collected from YouTube (25k+ frames)
 - We explored the 2,263 frames that feature drones or birds.
 - Small object instances, ranging from $\approx 4 \times 4$ to $\approx 16 \times 16$ pixels.

Datasets – Dataset2

- 51 videos depicting birds and 114 videos featuring drones
 - \bullet All selected videos have a resolution of 640×512 pixels.
 - We kept every tenth frame from the videos, resulting in 4,516 frames.

Datasets – DUT Anti-UAV

- 10,000 images with 10,109 manually annotated drone positions.
 - **High variability**: resolutions from 240 × 160 to 5616 × 3744 pixels, 35+ drone models, and a wide array of backgrounds (sky, clouds, jungles, urban landscapes, farmland, and playgrounds).

- **1st major challenge** \rightarrow detecting distant drones.
 - When processing high-resolution images, such as 4K or even Quad HD, and resizing them to the model's 640-pixel input, **distant objects became very small**, often approaching or falling below the detection threshold.

- 1st major challenge \rightarrow detecting distant drones.
 - When processing high-resolution images, such as 4K or even Quad HD, and resizing them to the model's 640-pixel input, **distant objects became very small**, often approaching or falling below the detection threshold.
 - We investigated several alternative models. For example:
 - **YOLO11m-p2**, a specialized variant with a finer stride configuration optimized for small object detection;
 - YOLOv11m with doubled input size (1280×1280 instead of 640×640);

- 1st major challenge \rightarrow detecting distant drones.
 - When processing high-resolution images, such as 4K or even Quad HD, and resizing them to the model's 640-pixel input, **distant objects became very small**, often approaching or falling below the detection threshold.
 - We investigated several alternative models. For example:
 - **YOLO11m-p2**, a specialized variant with a finer stride configuration optimized for small object detection;
 - YOLOv11m with doubled input size (1280×1280 instead of 640×640);
 - However, the [relatively small] gains did not justify the added computational cost.

Proposed Approach – Stage 1 – Multi-Scale Processing

Proposed Approach – Drone vs. Bird

The results for distant objects improved considerably, but...
2nd major challenge → distinguishing drones from birds.

Proposed Approach – Drone vs. Bird

The results for distant objects improved considerably, but...

- **2nd major challenge** \rightarrow distinguishing drones from birds.
 - We leveraged a copy-paste data augmentation technique to improve the training set with additional drone and bird instances.
 - This involved randomly placing cropped and scaled instances into new locations, ensuring they did not overlap with existing instances.
 - The images used for pasting were collected from both **the training set and various online sources**, all featuring transparent background.

Proposed Approach – Data Augmentation

• Original:

Proposed Approach – Data Augmentation

• Augmented:

Proposed Approach – Stage 2

Video Name	mAP_{50}	mAP_{50}^{\dagger}
dji_mavick_mountain	0.9891	0.6431
2019_10_16_C0003_3633_inspire	0.9421	0.9219
parrot_disco_distant_cross_3	0.8684	0.5550
GOPR5843_002	0.7175	0.3371
$\mathtt{swarm_dji_phantom4_2}$	0.7077	0.6566
dji_phantom_4_hillside_cross	0.4992	0.7406
gopro_002	0.4491	0.0121
Average	0.7390	0.5523
1		

¹ using the simplified variant that processes only whole images.

Results (Qualitative)

Results (Qualitative)

- We utilized the medium-sized YOLOv11 model for drone detection.
 - The input image is processed both as a whole and in segmented parts;
 - This strategy boosted detection performance, especially for distant drones.
- We employed extensive data augmentation.
 - A **copy-paste technique** to increase the number of drone and bird instances in the training images.
- A **post-processing stage** was incorporated to mitigate missed detections by leveraging **temporal information**.

Thank you!

https://raysonlaroca.github.io/supp/drone-vs-bird/

