## Automatic License Plate Recognition: Toward Improving the State of the Art and Bridging the Gap Between Academia and Industry

#### Rayson Laroca

Advisor: David Menotti Co-advisor: Rodrigo Minetto

PhD Final Examination





### Thesis Outline

- Introduction;
- 2 Theoretical Foundation;
- 8 Related Work;
- 4 The RodoSol-ALPR Dataset;
- 6 Cross-Dataset Generalization;
- 6 Model Fusion;
- Synthetic Data;
- 8 Near-Duplicates;
- O Dataset Bias;
- Conclusions.

### Thesis Outline

- Introduction;
- 2 Theoretical Foundation;
- 3 Related Work;
- 4 The RodoSol-ALPR Dataset;
- 6 Cross-Dataset Generalization;
- 6 Model Fusion;
- Synthetic Data;
- 8 Near-Duplicates;
- O Dataset Bias;
- Conclusions.

### Automatic License Plate Recognition (ALPR)



A typical Automatic License Plate Recognition (ALPR) system.

## Automatic License Plate Recognition (ALPR)



A typical Automatic License Plate Recognition (ALPR) system.

#### ALPR has many practical applications:

- Toll collection:
- Vehicle access control in restricted areas;
- Traffic law enforcement.

## Automatic License Plate Recognition (ALPR)



A typical Automatic License Plate Recognition (ALPR) system.

### ALPR has many practical applications:

- Toll collection;
- Vehicle access control in restricted areas;
- Traffic law enforcement.

Current research has mostly focused on the License Plate Recognition (LPR) stage.

#### Problem Statement - Internationalization

ALPR systems must handle LPs from different regions with different character sets.



Examples of different LP styles in the United States.

#### Problem Statement - Internationalization

ALPR systems must handle LPs from different regions with different character sets.



Examples of different LP styles in the United States.

Most ALPR systems presented in the literature were designed specifically for <u>a single</u>
<u>LP style</u> (e.g., single-row blue LPs from mainland China).

### Problem Statement – Mercosur LPs

Mercosur<sup>1</sup> countries have adopted a unified standard of LPs for newly purchased vehicles.



<sup>&</sup>lt;sup>1</sup>Mercosur, short for *Mercado Común del Sur* (Southern Common Market in Spanish), is an economic and political bloc comprising Argentina, Brazil, Paraguay and Uruguay.

### Problem Statement – Mercosur LPs

Mercosur<sup>1</sup> countries have adopted a unified standard of LPs for newly purchased vehicles.



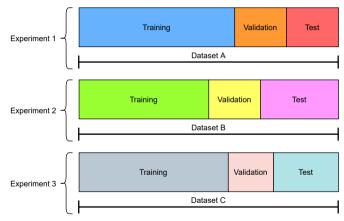
A public dataset containing images of Mercosur LPs is not yet available!

<sup>&</sup>lt;sup>1</sup>Mercosur, short for *Mercado Común del Sur* (Southern Common Market in Spanish), is an economic and political bloc comprising Argentina, Brazil, Paraguay and Uruguay.

000000000

# Problem Statement – Evaluation Protocols [1/3]

In the past, the evaluation of ALPR systems used to be done within individual datasets.

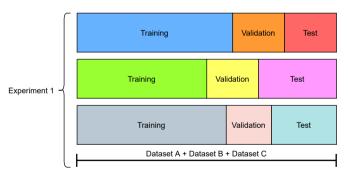


The proposed methods were trained/adjusted <u>multiple times</u>, once for each dataset.

# Problem Statement – Evaluation Protocols [2/3]

000000000

Recently, the proposed models have been <u>trained once</u> on the union of the training images from the selected datasets and evaluated separately on the respective test sets.



• ALPR systems have often achieved <u>impressive results</u> under this protocol.

000000000

# Problem Statement – Evaluation Protocols [3/3]

Generalization ability?

## Problem Statement – Evaluation Protocols [3/3]

# Generalization ability?

 In real-world applications, new cameras are regularly being installed in new locations without existing ALPR systems being retrained as often.

### Problem Statement - Labeled Data & Privacy Concerns

#### Labeled data is expensive:

- "Real data is not easy to obtain, the acquisition process is slow, and the data needs to be processed and annotated before it can be used for training. To achieve a higher accuracy of the annotation, manual inspection is also required." — Wu et al. (2018);
- "Collecting a sufficient number of LP images is extremely difficult for normal research." — Han et al. (2020);
- "Reducing the number of human-labeled samples or interactions with the world that are required to learn a task is of crucial importance." — Bengio et al. (2021).

### Problem Statement - Labeled Data & Privacy Concerns

- Labeled data is expensive;
- Privacy concerns are growing:
  - National data protection law that came into force in May 2018 in Europe
    - All personal items that can be used for identification must be anonymized in captured data
    - In Europe, license plate number can be used for identification

- Labeled data is expensive;
- Privacy concerns are growing.

Q: How to reduce the number of <u>real</u> and <u>human-labeled</u> images needed to achieve the expected results?

### Problem Statement – Labeled Data & Privacy Concerns

- Labeled data is expensive;
- Privacy concerns are growing.

Q: How to reduce the number of <u>real</u> and <u>human-labeled</u> images needed to achieve the expected results?

A: Synthetic Data!

## Hypothesis and Research Questions

### Hypothesis

It is possible to significantly improve the state of the art in ALPR without increasing the number of real training images, designing groundbreaking descriptors, or extensively searching for better model architectures.

## Hypothesis and Research Questions

#### Hypothesis

It is possible to significantly improve the state of the art in ALPR without increasing the number of real training images, designing groundbreaking descriptors, or extensively searching for better model architectures.

Some questions that guide our research are:

• How can we address the lack of attention given to images featuring Mercosur LPs?

### The RodoSol-ALPR Dataset

## RodoSol-ALPR Dataset [1/3]

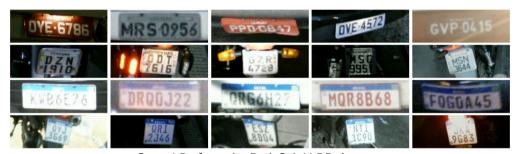


https://github.com/raysonlaroca/rodosol-alpr-dataset/

• RodoSol-ALPR contains  $\underline{20,000 \text{ images}}$  (1,280 × 720 pixels) captured by static cameras located at pay tolls owned by the *Rodovia do Sol* (RodoSol) concessionaire.

Introduction RodoSol Cross-Dataset Model Fusion Synthetic Data Near-Duplicates Dataset Bias Conclusions

## RodoSol-ALPR Dataset [2/3]



Some LPs from the RodoSol-ALPR dataset.

- 5,000 images of cars with Brazilian LPs (1st row);
- 5,000 images of motorcycles with Brazilian LPs (2nd row);
- 5,000 images of cars with Mercosur LPs (3rd row);
- 5,000 images of motorcycles with Mercosur LPs (4th row).

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 000000000000
 00000000000
 0000000000
 000000000
 000000000

## RodoSol-ALPR Dataset [3/3]

#### Access – 146 researchers from 42 countries around the world:



https://raysonlaroca.github.io/misc/rodosol-alpr-map/

## Recap – Hypothesis and Research Questions

#### Hypothesis

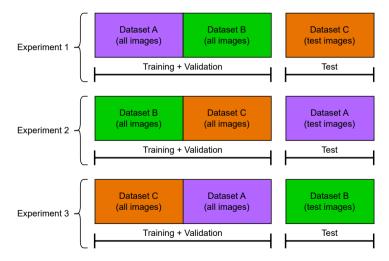
It is possible to significantly improve the state of the art in ALPR without increasing the number of real training images, designing groundbreaking descriptors, or extensively searching for better model architectures.

#### Some questions that guide our research are:

- How can we address the lack of attention given to images featuring Mercosur LPs?
- Do current methods for detecting and recognizing LPs generalize well to <u>unseen data</u>?

Introduction

## Experimental Setup – Leave-One-Dataset-Out Protocol



## Experimental Setup – Overview

A <u>traditional-split</u> versus <u>leave-one-dataset-out</u> experimental setup:

- 12 OCR models;
- RodoSol-ALPR +  $\underline{8}$  well-known public datasets.

## Experimental Setup – OCR Models

The 12 OCR models explored in this chapter.

| Original Application      |
|---------------------------|
|                           |
| Scene Text Recognition    |
|                           |
| License Plate Recognition |
| License Plate Recognition |
|                           |
| License Plate Recognition |
| Image-based Meter Reading |
|                           |

## Experimental Setup – OCR Models

The 12 OCR models explored in this chapter.

| The 12 OCK models explored                 | i ili tilis chapter.      |
|--------------------------------------------|---------------------------|
| Model                                      | Original Application      |
| Framework: PyTorch                         |                           |
| R <sup>2</sup> AM (Lee and Osindero, 2016) | Scene Text Recognition    |
| RARE (Shi et al., 2016)                    | Scene Text Recognition    |
| STAR-Net (Liu et al., 2016)                | Scene Text Recognition    |
| CRNN (Shi et al., 2017)                    | Scene Text Recognition    |
| GRCNN (Wang and Hu, 2017)                  | Scene Text Recognition    |
| Rosetta (Borisyuk et al., 2018)            | Scene Text Recognition    |
| TRBA (Baek et al., 2019)                   | Scene Text Recognition    |
| ViTSTR-Base (Atienza, 2021)                | Scene Text Recognition    |
| Framework: Keras                           |                           |
| Holistic-CNN (Špaňhel et al., 2017)        | License Plate Recognition |
| Multi-Task-LR (Gonçalves et al., 2019)     | License Plate Recognition |
| Framework: Darknet                         |                           |
| CR-NET (Silva and Jung, 2020)              | License Plate Recognition |
| Fast-OCR (Laroca et al., 2021)             | Image-based Meter Reading |

Model Fusion Introduction RodoSol Synthetic Data Near-Duplicates Dataset Bias Conclusions 0000000000000

# Experimental Setup – Datasets [1/2]

#### RodoSol-ALPR + 8 public datasets:



IL 917n

HDN-6806





























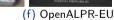


























(g) SSIG-SegPlate







troduction RodoSol Cross-Dataset Model Fusion Synthetic Data Near-Duplicates Dataset Bias Conclusions

## Experimental Setup – Datasets [2/2]

#### Original images:



### Results – LP Detection

#### Recall rates obtained by YOLOv4 in the **LP detection** stage (IoU $\geq$ 0.5).

| Test set              | Caltech Cars | EnglishLP | UCSD-Stills | ChineseLP | AOLP   | OpenALPR-EU | SSIG-SegPlate | UFPR-ALPR | RodoSol-ALPR | Average |
|-----------------------|--------------|-----------|-------------|-----------|--------|-------------|---------------|-----------|--------------|---------|
| Model                 | # 46         | # 102     | # 60        | # 161     | # 687  | # 108       | # 804         | # 1,800   | # 8,000      |         |
| Traditional-split     | 100.0%       | 100.0%    | 100.0%      | 100.0%    | 100.0% | 100.0%      | 99.9%         | 99.1%     | 100.0%       | 99.9%   |
| Leave-one-dataset-out | 100.0%       | 100.0%    | 100.0%      | 100.0%    | 99.9%  | 99.1%       | 100.0%        | 96.8%     | 99.6%        | 99.5%   |

### Results – LP Detection

#### Recall rates obtained by YOLOv4 in the **LP detection** stage (IoU $\geq$ 0.5).

| Test set              | Caltech Cars | EnglishLP | UCSD-Stills | ChineseLP | AOLP   | OpenALPR-EU | SSIG-SegPlate | UFPR-ALPR | RodoSol-ALPR | Average |
|-----------------------|--------------|-----------|-------------|-----------|--------|-------------|---------------|-----------|--------------|---------|
| Model                 | # 46         | # 102     | # 60        | # 161     | # 687  | # 108       | # 804         | # 1,800   | # 8,000      |         |
| Traditional-split     | 100.0%       | 100.0%    | 100.0%      | 100.0%    | 100.0% | 100.0%      | 99.9%         | 99.1%     | 100.0%       | 99.9%   |
| Leave-one-dataset-out | 100.0%       | 100.0%    | 100.0%      | 100.0%    | 99.9%  | 99.1%       | 100.0%        | 96.8%     | 99.6%        | 99.5%   |

Recall rates above 99.9% were achieved in 14 of the 18 assessments.

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 00000000000
 00000000000
 00000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000

#### Results – LP Detection

#### Recall rates obtained by YOLOv4 in the **LP detection** stage (IoU $\geq$ 0.5).

| Test set              | Caltech Cars | EnglishLP | UCSD-Stills | ChineseLP | AOLP   | OpenALPR-EU | SSIG-SegPlate | UFPR-ALPR | RodoSol-ALPR | Average |
|-----------------------|--------------|-----------|-------------|-----------|--------|-------------|---------------|-----------|--------------|---------|
| Model                 | # 46         | # 102     | # 60        | # 161     | # 687  | # 108       | # 804         | # 1,800   | # 8,000      |         |
| Traditional-split     | 100.0%       | 100.0%    | 100.0%      | 100.0%    | 100.0% | 100.0%      | 99.9%         | 99.1%     | 100.0%       | 99.9%   |
| Leave-one-dataset-out | 100.0%       | 100.0%    | 100.0%      | 100.0%    | 99.9%  | 99.1%       | 100.0%        | 96.8%     | 99.6%        | 99.5%   |

#### Recall rates above 99.9% were achieved in 14 of the 18 assessments.

• Regarding the <u>precision rates</u>, the "false positives" identified by YOLOv4 primarily correspond to unlabeled LPs in the image backgrounds, not actual errors:







## Results – LP Recognition (Traditional-Split)

#### Recognition rates obtained by all models under the traditional-split protocol.

| Test set<br>Model | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | OpenALPR-EU<br># 108 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|-------------------|----------------------|--------------------|---------------------|--------------------|---------------|----------------------|------------------------|----------------------|-------------------------|---------|
| CR-NET            | 97.8%                | 94.1%              | 100.0%              | 97.5%              | 98.0%         | 96.3%                | 97.5%                  | 82.6%                | 59.0% <sup>†</sup>      | 91.4%   |
| CRNN              | 93.5%                | 88.2%              | 91.7%               | 90.7%              | 97.1%         | 93.5%                | 92.9%                  | 68.9%                | 73.6%                   | 87.8%   |
| Fast-OCR          | 93.5%                | 97.1%              | 100.0%              | 97.5%              | 98.1%         | 97.2%                | 97.1%                  | 81.6%                | 56.7% <sup>†</sup>      | 91.0%   |
| GRCNN             | 93.5%                | 92.2%              | 93.3%               | 91.9%              | 97.1%         | 87.0%                | 93.4%                  | 66.6%                | 77.6%                   | 88.1%   |
| Holistic-CNN      | 87.0%                | 75.5%              | 88.3%               | 95.0%              | 97.7%         | 89.8%                | 95.6%                  | 81.2%                | 94.7%                   | 89.4%   |
| Multi-Task-LR     | 89.1%                | 73.5%              | 85.0%               | 92.5%              | 94.9%         | 85.2%                | 93.3%                  | 72.3%                | 86.6%                   | 85.8%   |
| R <sup>2</sup> AM | 89.1%                | 83.3%              | 86.7%               | 91.9%              | 96.5%         | 88.9%                | 92.0%                  | 75.9%                | 83.4%                   | 87.5%   |
| RARE              | 95.7%                | 94.1%              | 95.0%               | 94.4%              | 97.7%         | 94.4%                | 94.0%                  | 75.7%                | 78.7%                   | 91.1%   |
| Rosetta           | 89.1%                | 82.4%              | 93.3%               | 93.8%              | 97.5%         | 90.7%                | 94.4%                  | 75.5%                | 89.0%                   | 89.5%   |
| STAR-Net          | 95.7%                | 96.1%              | 95.0%               | 95.7%              | 97.8%         | 97.2%                | 96.1%                  | 78.8%                | 82.3%                   | 92.7%   |
| TRBA              | 93.5%                | 91.2%              | 91.7%               | 93.8%              | 97.2%         | 93.5%                | 97.3%                  | 83.4%                | 80.6%                   | 91.3%   |
| ViTSTR-Base       | 87.0%                | 88.2%              | 86.7%               | 96.9%              | 99.4%         | 89.8%                | 95.8%                  | 89.7%                | 95.6%                   | 92.1%   |
| Average           | 92.0%                | 88.0%              | 92.2%               | 94.3%              | 97.4%         | 92.0%                | 95.0%                  | 77.7%                | 79.8%                   | 89.8%   |

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 000000000
 00000000000
 00000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 000000000
 0000000000
 000000000
 0000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 00000000000
 00000000000
 00000000000
 0000000000000
 00000000000
 00000000000
 00000000000
 00000000000
 0000000000000
 000000000000
 00000000000000
 00000000000000000
 0000000000000000
 00000000000000000</td

## Results – LP Recognition (Traditional-Split)

#### Recognition rates obtained by all models under the traditional-split protocol.

| Test set<br>Model | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | OpenALPR-EU<br># 108 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|-------------------|----------------------|--------------------|---------------------|--------------------|---------------|----------------------|------------------------|----------------------|-------------------------|---------|
| CR-NET            | 97.8%                | 94.1%              | 100.0%              | 97.5%              | 98.0%         | 96.3%                | 97.5%                  | 82.6%                | 59.0% <sup>†</sup>      | 91.4%   |
| CRNN              | 93.5%                | 88.2%              | 91.7%               | 90.7%              | 97.1%         | 93.5%                | 92.9%                  | 68.9%                | 73.6%                   | 87.8%   |
| Fast-OCR          | 93.5%                | 97.1%              | 100.0%              | 97.5%              | 98.1%         | 97.2%                | 97.1%                  | 81.6%                | 56.7% <sup>†</sup>      | 91.0%   |
| GRCNN             | 93.5%                | 92.2%              | 93.3%               | 91.9%              | 97.1%         | 87.0%                | 93.4%                  | 66.6%                | 77.6%                   | 88.1%   |
| Holistic-CNN      | 87.0%                | 75.5%              | 88.3%               | 95.0%              | 97.7%         | 89.8%                | 95.6%                  | 81.2%                | 94.7%                   | 89.4%   |
| Multi-Task-LR     | 89.1%                | 73.5%              | 85.0%               | 92.5%              | 94.9%         | 85.2%                | 93.3%                  | 72.3%                | 86.6%                   | 85.8%   |
| $R^2AM$           | 89.1%                | 83.3%              | 86.7%               | 91.9%              | 96.5%         | 88.9%                | 92.0%                  | 75.9%                | 83.4%                   | 87.5%   |
| RARE              | 95.7%                | 94.1%              | 95.0%               | 94.4%              | 97.7%         | 94.4%                | 94.0%                  | 75.7%                | 78.7%                   | 91.1%   |
| Rosetta           | 89.1%                | 82.4%              | 93.3%               | 93.8%              | 97.5%         | 90.7%                | 94.4%                  | 75.5%                | 89.0%                   | 89.5%   |
| STAR-Net          | 95.7%                | 96.1%              | 95.0%               | 95.7%              | 97.8%         | 97.2%                | 96.1%                  | 78.8%                | 82.3%                   | 92.7%   |
| TRBA              | 93.5%                | 91.2%              | 91.7%               | 93.8%              | 97.2%         | 93.5%                | 97.3%                  | 83.4%                | 80.6%                   | 91.3%   |
| ViTSTR-Base       | 87.0%                | 88.2%              | 86.7%               | 96.9%              | 99.4%         | 89.8%                | 95.8%                  | 89.7%                | 95.6%                   | 92.1%   |
| Average           | 92.0%                | 88.0%              | 92.2%               | 94.3%              | 97.4%         | 92.0%                | 95.0%                  | 77.7%                | 79.8%                   | 89.8%   |

Different models yield the best results on different datasets!

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 00000000
 0000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 000000000
 0000000000
 0000000000
 0000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 000000000000
 00000000000
 0000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 0000000000000
 000000000000
 000000000000000
 00000000000000
 000000000000

## Results – LP Recognition (Traditional-Split)

### Recognition rates obtained by all models under the traditional-split protocol.

| Test set<br>Model | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | OpenALPR-EU<br># 108 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|-------------------|----------------------|--------------------|---------------------|--------------------|---------------|----------------------|------------------------|----------------------|-------------------------|---------|
| CR-NET            | 97.8%                | 94.1%              | 100.0%              | 97.5%              | 98.0%         | 96.3%                | 97.5%                  | 82.6%                | 59.0% <sup>†</sup>      | 91.4%   |
| CRNN              | 93.5%                | 88.2%              | 91.7%               | 90.7%              | 97.1%         | 93.5%                | 92.9%                  | 68.9%                | 73.6%                   | 87.8%   |
| Fast-OCR          | 93.5%                | 97.1%              | 100.0%              | 97.5%              | 98.1%         | 97.2%                | 97.1%                  | 81.6%                | 56.7% <sup>†</sup>      | 91.0%   |
| GRCNN             | 93.5%                | 92.2%              | 93.3%               | 91.9%              | 97.1%         | 87.0%                | 93.4%                  | 66.6%                | 77.6%                   | 88.1%   |
| Holistic-CNN      | 87.0%                | 75.5%              | 88.3%               | 95.0%              | 97.7%         | 89.8%                | 95.6%                  | 81.2%                | 94.7%                   | 89.4%   |
| Multi-Task-LR     | 89.1%                | 73.5%              | 85.0%               | 92.5%              | 94.9%         | 85.2%                | 93.3%                  | 72.3%                | 86.6%                   | 85.8%   |
| R <sup>2</sup> AM | 89.1%                | 83.3%              | 86.7%               | 91.9%              | 96.5%         | 88.9%                | 92.0%                  | 75.9%                | 83.4%                   | 87.5%   |
| RARE              | 95.7%                | 94.1%              | 95.0%               | 94.4%              | 97.7%         | 94.4%                | 94.0%                  | 75.7%                | 78.7%                   | 91.1%   |
| Rosetta           | 89.1%                | 82.4%              | 93.3%               | 93.8%              | 97.5%         | 90.7%                | 94.4%                  | 75.5%                | 89.0%                   | 89.5%   |
| STAR-Net          | 95.7%                | 96.1%              | 95.0%               | 95.7%              | 97.8%         | 97.2%                | 96.1%                  | 78.8%                | 82.3%                   | 92.7%   |
| TRBA              | 93.5%                | 91.2%              | 91.7%               | 93.8%              | 97.2%         | 93.5%                | 97.3%                  | 83.4%                | 80.6%                   | 91.3%   |
| ViTSTR-Base       | 87.0%                | 88.2%              | 86.7%               | 96.9%              | 99.4%         | 89.8%                | 95.8%                  | 89.7%                | 95.6%                   | 92.1%   |
| Average           | 92.0%                | 88.0%              | 92.2%               | 94.3%              | 97.4%         | 92.0%                | 95.0%                  | 77.7%                | 79.8%                   | 89.8%   |

What do these datasets have in common?

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 000000000
 0000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 00000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 00000000000
 0000000000
 0000000000
 000000000000
 00000000000
 000000000000
 000000000000
 000000000000

## Results – LP Recognition (Traditional-Split)

### LPs with two rows of characters!



(a) EnglishLP



(b) UFPR-ALPR



(c) RodoSol-ALPR

- In Brazil, the motorcycle fleet currently represents 28% of the total vehicle fleet.<sup>2</sup>
  - All motorcycles in Brazil have two-row LPs.

<sup>&</sup>lt;sup>2</sup>www.gov.br/infraestrutura/pt-br/assuntos/transito/conteudo-denatran/frota-de-veiculos-2024

## Results – LP Recognition (Leave-One-Dataset-Out)

### Recognition rates obtained by all models under the leave-one-dataset-out protocol.

| Test set<br>Model           | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | OpenALPR-EU<br># 108 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|-----------------------------|----------------------|--------------------|---------------------|--------------------|---------------|----------------------|------------------------|----------------------|-------------------------|---------|
| CR-NET                      | 97.8%                | 97.1%              | 98.3%               | 94.4%              | 89.1%         | 98.1%                | 97.1%                  | 66.4%                | 63.8%                   | 89.1%   |
| CRNN                        | 93.5%                | 82.4%              | 86.7%               | 84.5%              | 71.6%         | 94.4%                | 90.8%                  | 62.9%                | 39.2%                   | 78.4%   |
| Fast-OCR                    | 95.7%                | 95.1%              | 96.7%               | 93.8%              | 79.3%         | 96.3%                | 95.5%                  | 65.9%                | 63.4%                   | 86.8%   |
| GRCNN                       | 93.5%                | 82.4%              | 93.3%               | 85.1%              | 72.1%         | 91.7%                | 90.8%                  | 62.7%                | 40.0%                   | 79.0%   |
| Holistic-CNN                | 84.8%                | 56.9%              | 76.7%               | 82.6%              | 60.0%         | 93.5%                | 93.2%                  | 66.4%                | 34.5%                   | 72.0%   |
| Multi-Task-LR               | 84.8%                | 57.8%              | 78.3%               | 76.4%              | 67.5%         | 88.9%                | 90.8%                  | 61.7%                | 25.2%                   | 70.2%   |
| R <sup>2</sup> AM           | 89.1%                | 58.8%              | 81.7%               | 85.1%              | 62.6%         | 89.8%                | 94.2%                  | 61.2%                | 41.1%                   | 73.7%   |
| RARE                        | 89.1%                | 64.7%              | 93.3%               | 88.2%              | 70.7%         | 92.6%                | 93.9%                  | 78.2%                | 40.2%                   | 79.0%   |
| Rosetta                     | 95.7%                | 82.4%              | 88.3%               | 87.6%              | 70.6%         | 90.7%                | 93.9%                  | 69.2%                | 42.8%                   | 80.1%   |
| STAR-Net                    | 91.3%                | 85.3%              | 93.3%               | 92.5%              | 79.2%         | 96.3%                | 93.8%                  | 74.8%                | 43.8%                   | 83.4%   |
| TRBA                        | 91.3%                | 62.7%              | 95.0%               | 92.5%              | 75.3%         | 92.6%                | 96.8%                  | 82.9%                | 42.9%                   | 81.3%   |
| ViTSTR-Base                 | 93.5%                | 62.7%              | 86.7%               | 96.3%              | 68.9%         | 91.7%                | 97.8%                  | 84.7%                | 59.7%                   | 82.4%   |
| Average                     | 91.7%                | 74.0%              | 89.0%               | 88.3%              | 72.2%         | 93.1%                | 94.0%                  | 69.7%                | 44.7%                   | 79.6%   |
| Average (traditional split) | 92.0%                | 88.0%              | 92.2%               | 94.3%              | 97.4%         | 92.0%‡               | 95.0%                  | 77.7%                | 79.8%                   | 89.8%   |
| Sighthound                  | 87.0%                | 94.1%              | 90.0%               | 84.5%              | 79.6%         | 94.4%                | 79.2%                  | 52.6%                | 51.0%                   | 79.2%   |
| OpenALPR                    | 95.7%                | 99.0%              | 96.7%               | 93.8%              | 81.1%         | 99.1%                | 91.4%                  | 87.8%                | 70.0%                   | 90.5%   |

<sup>†</sup>Under the traditional-split protocol, no images from the OpenALPR-EU dataset were used for training. This is the protocol commonly adopted in the literature.

## Results – LP Recognition (Leave-One-Dataset-Out)

#### Recognition rates obtained by all models under the leave-one-dataset-out protocol.

| Test set<br>Model           | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | OpenALPR-EU<br># 108 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|-----------------------------|----------------------|--------------------|---------------------|--------------------|---------------|----------------------|------------------------|----------------------|-------------------------|---------|
| CR-NET                      | 97.8%                | 97.1%              | 98.3%               | 94.4%              | 89.1%         | 98.1%                | 97.1%                  | 66.4%                | 63.8%                   | 89.1%   |
| CRNN                        | 93.5%                | 82.4%              | 86.7%               | 84.5%              | 71.6%         | 94.4%                | 90.8%                  | 62.9%                | 39.2%                   | 78.4%   |
| Fast-OCR                    | 95.7%                | 95.1%              | 96.7%               | 93.8%              | 79.3%         | 96.3%                | 95.5%                  | 65.9%                | 63.4%                   | 86.8%   |
| GRCNN                       | 93.5%                | 82.4%              | 93.3%               | 85.1%              | 72.1%         | 91.7%                | 90.8%                  | 62.7%                | 40.0%                   | 79.0%   |
| Holistic-CNN                | 84.8%                | 56.9%              | 76.7%               | 82.6%              | 60.0%         | 93.5%                | 93.2%                  | 66.4%                | 34.5%                   | 72.0%   |
| Multi-Task-LR               | 84.8%                | 57.8%              | 78.3%               | 76.4%              | 67.5%         | 88.9%                | 90.8%                  | 61.7%                | 25.2%                   | 70.2%   |
| R <sup>2</sup> AM           | 89.1%                | 58.8%              | 81.7%               | 85.1%              | 62.6%         | 89.8%                | 94.2%                  | 61.2%                | 41.1%                   | 73.7%   |
| RARE                        | 89.1%                | 64.7%              | 93.3%               | 88.2%              | 70.7%         | 92.6%                | 93.9%                  | 78.2%                | 40.2%                   | 79.0%   |
| Rosetta                     | 95.7%                | 82.4%              | 88.3%               | 87.6%              | 70.6%         | 90.7%                | 93.9%                  | 69.2%                | 42.8%                   | 80.1%   |
| STAR-Net                    | 91.3%                | 85.3%              | 93.3%               | 92.5%              | 79.2%         | 96.3%                | 93.8%                  | 74.8%                | 43.8%                   | 83.4%   |
| TRBA                        | 91.3%                | 62.7%              | 95.0%               | 92.5%              | 75.3%         | 92.6%                | 96.8%                  | 82.9%                | 42.9%                   | 81.3%   |
| ViTSTR-Base                 | 93.5%                | 62.7%              | 86.7%               | 96.3%              | 68.9%         | 91.7%                | 97.8%                  | 84.7%                | 59.7%                   | 82.4%   |
| Average                     | 91.7%                | 74.0%              | 89.0%               | 88.3%              | 72.2%         | 93.1%                | 94.0%                  | 69.7%                | 44.7%                   | 79.6%   |
| Average (traditional split) | 92.0%                | 88.0%              | 92.2%               | 94.3%              | 97.4%         | 92.0% <sup>‡</sup>   | 95.0%                  | 77.7%                | 79.8%                   | 89.8%   |
| Sighthound                  | 87.0%                | 94.1%              | 90.0%               | 84.5%              | 79.6%         | 94.4%                | 79.2%                  | 52.6%                | 51.0%                   | 79.2%   |
| OpenALPR                    | 95.7%                | 99.0%              | 96.7%               | 93.8%              | 81.1%         | 99.1%                | 91.4%                  | 87.8%                | 70.0%                   | 90.5%   |

<sup>&</sup>lt;sup>‡</sup> Under the traditional-split protocol, no images from the OpenALPR-EU dataset were used for training. This is the protocol commonly adopted in the literature.

### Results – LP Recognition (Leave-One-Dataset-Out)









LODO: 8C83T3 Trad - 8C8313

Trad · ARO416

Trad · P63791

Trad : 0325DM

The predictions obtained by TRBA on three images of the AOLP dataset.



LODO: CK3118B Trad.: CK311BR

LODO: NB4071P

Trad.: MB4071P



Trad.: ZG4097AC



LODO: ZGQ880TM Trad.: ZG 880TV

The predictions obtained by STAR-Net on three images of the EnglishLP dataset.

In general, the errors under the Leave-One-Dataset-Out (LODO) protocol did not occur in challenging cases (e.g., blurry or tilted images); therefore, they were probably caused by differences in the training and test images. Trad.: traditional-split protocol.

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 0000000000
 00000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 0000000000000
 0000000000000
 000000000000000
 000000

## Results – LP Recognition (Leave-One-Dataset-Out)

#### Recognition rates obtained by all models under the leave-one-dataset-out protocol.

| Test set<br>Model           | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | OpenALPR-EU<br># 108 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|-----------------------------|----------------------|--------------------|---------------------|--------------------|---------------|----------------------|------------------------|----------------------|-------------------------|---------|
| CR-NET                      | 97.8%                | 97.1%              | 98.3%               | 94.4%              | 89.1%         | 98.1%                | 97.1%                  | 66.4%                | 63.8%                   | 89.1%   |
| CRNN                        | 93.5%                | 82.4%              | 86.7%               | 84.5%              | 71.6%         | 94.4%                | 90.8%                  | 62.9%                | 39.2%                   | 78.4%   |
| Fast-OCR                    | 95.7%                | 95.1%              | 96.7%               | 93.8%              | 79.3%         | 96.3%                | 95.5%                  | 65.9%                | 63.4%                   | 86.8%   |
| GRCNN                       | 93.5%                | 82.4%              | 93.3%               | 85.1%              | 72.1%         | 91.7%                | 90.8%                  | 62.7%                | 40.0%                   | 79.0%   |
| Holistic-CNN                | 84.8%                | 56.9%              | 76.7%               | 82.6%              | 60.0%         | 93.5%                | 93.2%                  | 66.4%                | 34.5%                   | 72.0%   |
| Multi-Task-LR               | 84.8%                | 57.8%              | 78.3%               | 76.4%              | 67.5%         | 88.9%                | 90.8%                  | 61.7%                | 25.2%                   | 70.2%   |
| R <sup>2</sup> AM           | 89.1%                | 58.8%              | 81.7%               | 85.1%              | 62.6%         | 89.8%                | 94.2%                  | 61.2%                | 41.1%                   | 73.7%   |
| RARE                        | 89.1%                | 64.7%              | 93.3%               | 88.2%              | 70.7%         | 92.6%                | 93.9%                  | 78.2%                | 40.2%                   | 79.0%   |
| Rosetta                     | 95.7%                | 82.4%              | 88.3%               | 87.6%              | 70.6%         | 90.7%                | 93.9%                  | 69.2%                | 42.8%                   | 80.1%   |
| STAR-Net                    | 91.3%                | 85.3%              | 93.3%               | 92.5%              | 79.2%         | 96.3%                | 93.8%                  | 74.8%                | 43.8%                   | 83.4%   |
| TRBA                        | 91.3%                | 62.7%              | 95.0%               | 92.5%              | 75.3%         | 92.6%                | 96.8%                  | 82.9%                | 42.9%                   | 81.3%   |
| ViTSTR-Base                 | 93.5%                | 62.7%              | 86.7%               | 96.3%              | 68.9%         | 91.7%                | 97.8%                  | 84.7%                | 59.7%                   | 82.4%   |
| Average                     | 91.7%                | 74.0%              | 89.0%               | 88.3%              | 72.2%         | 93.1%                | 94.0%                  | 69.7%                | 44.7%                   | 79.6%   |
| Average (traditional split) | 92.0%                | 88.0%              | 92.2%               | 94.3%              | 97.4%         | 92.0% <sup>‡</sup>   | 95.0%                  | 77.7%                | 79.8%                   | 89.8%   |
| Sighthound                  | 87.0%                | 94.1%              | 90.0%               | 84.5%              | 79.6%         | 94.4%                | 79.2%                  | 52.6%                | 51.0%                   | 79.2%   |
| OpenALPR                    | 95.7%                | 99.0%              | 96.7%               | 93.8%              | 81.1%         | 99.1%                | 91.4%                  | 87.8%                | 70.0%                   | 90.5%   |

<sup>&</sup>lt;sup>‡</sup>Under the traditional-split protocol, no images from the OpenALPR-EU dataset were used for training. This is the protocol commonly adopted in the literature.

These results accentuated the importance of the RodoSol-ALPR dataset for training deep models for robust recognition of <u>Mercosur</u> and <u>two-row LPs</u>.

- Researchers should pay more attention to cross-dataset LP recognition;
  - Significant drops in performance (e.g.,  $97.4\% \rightarrow 72.2\%$ ) when training and testing the recognition models in a <u>leave-one-dataset-out fashion</u>.

- Researchers should pay more attention to cross-dataset LP recognition;
  - Significant drops in performance (e.g.,  $97.4\% \rightarrow 72.2\%$ ) when training and testing the recognition models in a <u>leave-one-dataset-out fashion</u>.
- RodoSol-ALPR proved essential for the reliable recognition of Mercosur LPs.
  - Both the models trained by us and two established commercial systems reached recognition rates below 70% on its test set under the leave-one-dataset-out protocol.

- Researchers should pay more attention to cross-dataset LP recognition;
  - Significant drops in performance (e.g.,  $97.4\% \rightarrow 72.2\%$ ) when training and testing the recognition models in a <u>leave-one-dataset-out fashion</u>.
- RodoSol-ALPR proved essential for the reliable recognition of Mercosur LPs.
  - Both the models trained by us and two established commercial systems reached recognition rates below 70% on its test set under the leave-one-dataset-out protocol.
- Different OCR models yielded the best results on different datasets!

## Recap – Hypothesis and Research Questions

### Hypothesis

It is possible to significantly improve the state of the art in ALPR without increasing the number of real training images, designing groundbreaking descriptors, or extensively searching for better model architectures.

### Some questions that guide our research are:

- How can we address the lack of attention given to images featuring Mercosur LPs?
- Do current methods for detecting and recognizing LPs generalize well to unseen data?
- Can we considerably improve results by <u>combining the outputs of various OCR models?</u>

Introduction

Leveraging Model Fusion for Improved License Plate Recognition

## Experimental Setup – Fusion Approaches

# ABC-1234

5 OCR Models

ABC1234 (0.7) ADE5678 (0.4) ADF1235 (0.9)

ABC1234 (0.3)

ADH1236 (0.8)

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 00000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 00000000000
 00000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 00000000000
 00000000000
 00000000000
 00000000000
 000000000000
 000000000000
 00000000000
 00000000000000
 000

## Experimental Setup – Fusion Approaches

# ABC-1234

```
5 OCR Models

ABC1234 (0.7)

ADE5678 (0.4)

ADF9012 (0.9)

ABC1234 (0.3)

ADH1236 (0.8)
```

Three primary fusion approaches:

1 Highest Confidence (HC): ADF9012

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 00000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 00000000000
 00000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 00000000000
 00000000000
 00000000000
 00000000000
 000000000000
 000000000000
 00000000000
 00000000000000
 000

## Experimental Setup – Fusion Approaches

# ABC-1234

```
5 OCR Models

ABC1234 (0.7)

ADE5678 (0.4)

ADF9012 (0.9)

ABC1234 (0.3)

ADH1236 (0.8)
```

Three primary fusion approaches:

- 1 Highest Confidence (HC): ADF9012
- 2 Majority Vote (MV): ABC1234

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 00000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 00000000000
 00000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 00000000000
 00000000000
 00000000000
 00000000000
 000000000000
 000000000000
 00000000000
 00000000000000
 000

## Experimental Setup – Fusion Approaches

# ABC-1234

5 OCR Models

\$\delta\$

ABC1234 (0.7)

ADE5678 (0.4)

ADF9012 (0.9)

ABC1234 (0.3)

ADH1236 (0.8)

Three primary fusion approaches:

- 1 Highest Confidence (HC): ADF9012
- 2 Majority Vote (MV): ABC1234
- 3 Majority Vote by Character Position (MVCP): ADC1234

# Comparison of the recognition rates achieved across eight popular datasets by 12 models individually and through five different fusion strategies (intra-dataset experiments).

| Test set<br>Model      | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|------------------------|----------------------|--------------------|---------------------|--------------------|---------------|------------------------|----------------------|-------------------------|---------|
| CR-NET                 | 97.8%                | 94.1%              | 100.0%              | 97.5%              | 98.1%         | 97.5%                  | 82.6%                | 59.0% <sup>†</sup>      | 90.8%   |
| CRNN                   | 93.5%                | 88.2%              | 91.7%               | 90.7%              | 97.1%         | 92.9%                  | 68.9%                | 73.6%                   | 87.1%   |
| Fast-OCR               | 93.5%                | 97.1%              | 100.0%              | 97.5%              | 98.1%         | 97.1%                  | 81.6%                | 56.7% <sup>†</sup>      | 90.2%   |
| GRCNN                  | 93.5%                | 92.2%              | 93.3%               | 91.9%              | 97.1%         | 93.4%                  | 66.6%                | 77.6%                   | 88.2%   |
| Holistic-CNN           | 87.0%                | 75.5%              | 88.3%               | 95.0%              | 97.7%         | 95.6%                  | 81.2%                | 94.7%                   | 89.4%   |
| Multi-Task-LR          | 89.1%                | 73.5%              | 85.0%               | 92.5%              | 94.9%         | 93.3%                  | 72.3%                | 86.6%                   | 85.9%   |
| R <sup>2</sup> AM      | 89.1%                | 83.3%              | 86.7%               | 91.9%              | 96.5%         | 92.0%                  | 75.9%                | 83.4%                   | 87.4%   |
| RARE                   | 95.7%                | 94.1%              | 95.0%               | 94.4%              | 97.7%         | 94.0%                  | 75.7%                | 78.7%                   | 90.7%   |
| Rosetta                | 89.1%                | 82.4%              | 93.3%               | 93.8%              | 97.5%         | 94.4%                  | 75.5%                | 89.0%                   | 89.4%   |
| STAR-Net               | 95.7%                | 96.1%              | 95.0%               | 95.7%              | 97.8%         | 96.1%                  | 78.8%                | 82.3%                   | 92.2%   |
| TRBA                   | 93.5%                | 91.2%              | 91.7%               | 93.8%              | 97.2%         | 97.3%                  | 83.4%                | 80.6%                   | 91.1%   |
| ViTSTR-Base            | 87.0%                | 88.2%              | 86.7%               | 96.9%              | 99.4%         | 95.8%                  | 89.7%                | 95.6%                   | 92.4%   |
| Fusion HC (top 6)      | 97.8%                | 95.1%              | 96.7%               | 98.1%              | 99.0%         | 96.6%                  | 90.9%                | 93.5%                   | 96.0%   |
| Fusion MV-BM (top 8)   | 97.8%                | 97.1%              | 100.0%              | 98.1%              | 99.7%         | 98.4%                  | 92.7%                | 96.4%                   | 97.5%   |
| Fusion MV-HC (top 8)   | 97.8%                | 97.1%              | 100.0%              | 98.1%              | 99.7%         | 99.1%                  | 92.3%                | 96.5%                   | 97.6%   |
| Fusion MVCP-BM (top 9) | 95.7%                | 96.1%              | 100.0%              | 98.1%              | 99.6%         | 99.0%                  | 92.8%                | 96.4%                   | 97.2%   |
| Fusion MVCP-HC (top 9) |                      | 96.1%              | 100.0%              | 98.1%              | 99.6%         | 99.3%                  | 92.5 <b>%</b>        | 96.3%                   | 97.5%   |

# Comparison of the recognition rates achieved across eight popular datasets by 12 models individually and through five different fusion strategies (intra-dataset experiments).

| Test set<br>Model          | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|----------------------------|----------------------|--------------------|---------------------|--------------------|---------------|------------------------|----------------------|-------------------------|---------|
| CR-NET                     | 97.8%                | 94.1%              | 100.0%              | 97.5%              | 98.1%         | 97.5%                  | 82.6%                | 59.0% <sup>†</sup>      | 90.8%   |
| CRNN                       | 93.5%                | 88.2%              | 91.7%               | 90.7%              | 97.1%         | 92.9%                  | 68.9%                | 73.6%                   | 87.1%   |
| Fast-OCR                   | 93.5%                | 97.1%              | 100.0%              | 97.5%              | 98.1%         | 97.1%                  | 81.6%                | 56.7% <sup>†</sup>      | 90.2%   |
| GRCNN                      | 93.5%                | 92.2%              | 93.3%               | 91.9%              | 97.1%         | 93.4%                  | 66.6%                | 77.6%                   | 88.2%   |
| Holistic-CNN               | 87.0%                | 75.5%              | 88.3%               | 95.0%              | 97.7%         | 95.6%                  | 81.2%                | 94.7%                   | 89.4%   |
| Multi-Task-LR              | 89.1%                | 73.5%              | 85.0%               | 92.5%              | 94.9%         | 93.3%                  | 72.3%                | 86.6%                   | 85.9%   |
| R <sup>2</sup> AM          | 89.1%                | 83.3%              | 86.7%               | 91.9%              | 96.5%         | 92.0%                  | 75.9%                | 83.4%                   | 87.4%   |
| RARE                       | 95.7%                | 94.1%              | 95.0%               | 94.4%              | 97.7%         | 94.0%                  | 75.7%                | 78.7%                   | 90.7%   |
| Rosetta                    | 89.1%                | 82.4%              | 93.3%               | 93.8%              | 97.5%         | 94.4%                  | 75.5%                | 89.0%                   | 89.4%   |
| STAR-Net                   | 95.7%                | 96.1%              | 95.0%               | 95.7%              | 97.8%         | 96.1%                  | 78.8%                | 82.3%                   | 92.2%   |
| TRBA                       | 93.5%                | 91.2%              | 91.7%               | 93.8%              | 97.2%         | 97.3%                  | 83.4%                | 80.6%                   | 91.1%   |
| ViTSTR-Base                | 87.0%                | 88.2%              | 86.7%               | 96.9%              | 99.4%         | 95.8%                  | 89.7%                | 95.6%                   | 92.4%   |
| Fusion HC ( <i>top 6</i> ) | 97.8%                | 95.1%              | 96.7%               | 98.1%              | 99.0%         | 96.6%                  | 90.9%                | 93.5%                   | 96.0%   |
| Fusion MV-BM (top 8)       | 97.8%                | 97.1%              | 100.0%              | 98.1%              | 99.7%         | 98.4%                  | 92.7%                | 96.4%                   | 97.5%   |
| Fusion MV-HC (top 8)       | 97.8%                | 97.1%              | 100.0%              | 98.1%              | 99.7%         | 99.1%                  | 92.3%                | 96.5%                   | 97.6%   |
| Fusion MVCP-BM (top 9      | 95.7%                | 96.1%              | 100.0%              | 98.1%              | 99.6%         | 99.0%                  | 92.8%                | 96.4%                   | 97.2%   |
| Fusion MVCP-HC (top 9)     | 97.8%                | 96.1%              | 100.0%              | 98.1%              | 99.6%         | 99.3%                  | 92.5 <b>%</b>        | 96.3%                   | 97.5%   |

Comparison of the recognition rates achieved across eight popular datasets by 12 models individually and through five different fusion strategies (<u>intra-dataset experiments</u>).

| Test set               | Caltech Cars | EnglishLP | UCSD-Stills | ChineseLP | AOLP  | SSIG-SegPlate | UFPR-ALPR | RodoSol-ALPR       | Average |
|------------------------|--------------|-----------|-------------|-----------|-------|---------------|-----------|--------------------|---------|
| Model                  | # 46         | # 102     | # 60        | # 161     | # 687 | # 804         | # 1,800   | # 8,000            |         |
| CR-NET                 | 97.8%        | 94.1%     | 100.0%      | 97.5%     | 98.1% | 97.5%         | 82.6%     | 59.0% <sup>†</sup> | 90.8%   |
| CRNN                   | 93.5%        | 88.2%     | 91.7%       | 90.7%     | 97.1% | 92.9%         | 68.9%     | 73.6%              | 87.1%   |
| Fast-OCR               | 93.5%        | 97.1%     | 100.0%      | 97.5%     | 98.1% | 97.1%         | 81.6%     | 56.7% <sup>†</sup> | 90.2%   |
| GRCNN                  | 93.5%        | 92.2%     | 93.3%       | 91.9%     | 97.1% | 93.4%         | 66.6%     | 77.6%              | 88.2%   |
| Holistic-CNN           | 87.0%        | 75.5%     | 88.3%       | 95.0%     | 97.7% | 95.6%         | 81.2%     | 94.7%              | 89.4%   |
| Multi-Task-LR          | 89.1%        | 73.5%     | 85.0%       | 92.5%     | 94.9% | 93.3%         | 72.3%     | 86.6%              | 85.9%   |
| R <sup>2</sup> AM      | 89.1%        | 83.3%     | 86.7%       | 91.9%     | 96.5% | 92.0%         | 75.9%     | 83.4%              | 87.4%   |
| RARE                   | 95.7%        | 94.1%     | 95.0%       | 94.4%     | 97.7% | 94.0%         | 75.7%     | 78.7%              | 90.7%   |
| Rosetta                | 89.1%        | 82.4%     | 93.3%       | 93.8%     | 97.5% | 94.4%         | 75.5%     | 89.0%              | 89.4%   |
| STAR-Net               | 95.7%        | 96.1%     | 95.0%       | 95.7%     | 97.8% | 96.1%         | 78.8%     | 82.3%              | 92.2%   |
| ΓRBA                   | 93.5%        | 91.2%     | 91.7%       | 93.8%     | 97.2% | 97.3%         | 83.4%     | 80.6%              | 91.1%   |
| ViTSTR-Base            | 87.0%        | 88.2%     | 86.7%       | 96.9%     | 99.4% | 95.8%         | 89.7%     | 95.6%              | 92.4%   |
|                        | 97.8%        | 95.1%     | 96.7%       | 98.1%     | 99.0% | 96.6%         | 90.9%     | 93.5%              | 96.0%   |
| Fusion MV-BM (top 8)   | 97.8%        | 97.1%     | 100.0%      | 98.1%     | 99.7% | 98.4%         | 92.7%     | 96.4%              | 97.5%   |
| Fusion MV-HC (top 8)   | 97.8%        | 97.1%     | 100.0%      | 98.1%     | 99.7% | 99.1%         | 92.3%     | 96.5%              | 97.6%   |
| Fusion MVCP-BM (top 9) | 95.7%        | 96.1%     | 100.0%      | 98.1%     | 99.6% | 99.0%         | 92.8%     | 96.4%              | 97.2%   |
| Fusion MVCP-HC (top 9) | 97.8%        | 96.1%     | 100.0%      | 98.1%     | 99.6% | 99.3%         | 92.5%     | 96.3%              | 97.5%   |

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 000000000000
 00000000000
 0000000000
 000000000
 000000000

### Results

While each model individually obtained recognition rates <u>below 90%</u> for at least two datasets, all fusion strategies surpassed the 90% threshold across all datasets.

| T              | est set    | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|----------------|------------|----------------------|--------------------|---------------------|--------------------|---------------|------------------------|----------------------|-------------------------|---------|
| CR-NET         |            | 97.8%                | 94.1%              | 100.0%              | 97.5%              | 98.1%         | 97.5%                  | 82.6%                | 59.0% <sup>†</sup>      | 90.8%   |
| CRNN           |            | 93.5%                | 88.2%              | 91.7%               | 90.7%              | 97.1%         | 92.9%                  | 68.9%                | 73.6%                   | 87.1%   |
| Fast-OCR       |            | 93.5%                | 97.1%              | 100.0%              | 97.5%              | 98.1%         | 97.1%                  | 81.6%                | 56.7% <sup>†</sup>      | 90.2%   |
| GRCNN          |            | 93.5%                | 92.2%              | 93.3%               | 91.9%              | 97.1%         | 93.4%                  | 66.6%                | 77.6%                   | 88.2%   |
| Holistic-CNN   |            | 87.0%                | 75.5%              | 88.3%               | 95.0%              | 97.7%         | 95.6%                  | 81.2%                | 94.7%                   | 89.4%   |
| Multi-Task-LR  |            | 89.1%                | 73.5%              | 85.0%               | 92.5%              | 94.9%         | 93.3%                  | 72.3%                | 86.6%                   | 85.9%   |
| $R^2AM$        |            | 89.1%                | 83.3%              | 86.7%               | 91.9%              | 96.5%         | 92.0%                  | 75.9%                | 83.4%                   | 87.4%   |
| RARE           |            | 95.7%                | 94.1%              | 95.0%               | 94.4%              | 97.7%         | 94.0%                  | 75.7%                | 78.7%                   | 90.7%   |
| Rosetta        |            | 89.1%                | 82.4%              | 93.3%               | 93.8%              | 97.5%         | 94.4%                  | 75.5%                | 89.0%                   | 89.4%   |
| STAR-Net       |            | 95.7%                | 96.1%              | 95.0%               | 95.7%              | 97.8%         | 96.1%                  | 78.8%                | 82.3%                   | 92.2%   |
| TRBA           |            | 93.5%                | 91.2%              | 91.7%               | 93.8%              | 97.2%         | 97.3%                  | 83.4%                | 80.6%                   | 91.1%   |
| ViTSTR-Base    |            | 87.0%                | 88.2%              | 86.7%               | 96.9%              | 99.4%         | 95.8%                  | 89.7%                | 95.6%                   | 92.4%   |
| Fusion HC (top | 6)         | 97.8%                | 95.1%              | 96.7%               | 98.1%              | 99.0%         | 96.6%                  | 90.9%                | 93.5%                   | 96.0%   |
| Fusion MV-BM   | (top 8)    | 97.8%                | 97.1%              | 100.0%              | 98.1%              | 99.7%         | 98.4%                  | 92.7%                | 96.4%                   | 97.5%   |
| Fusion MV-HC   | (top 8)    | 97.8%                | 97.1%              | 100.0%              | 98.1%              | 99.7%         | 99.1%                  | 92.3%                | 96.5%                   | 97.6%   |
| Fusion MVCP-E  | M (top 9)  | 95.7%                | 96.1%              | 100.0%              | 98.1%              | 99.6%         | 99.0%                  | 92.8%                | 96.4%                   | 97.2%   |
| Fusion MVCP-F  | IC (top 9) | 97.8%                | 96.1%              | 100.0%              | 98.1%              | 99.6%         | 99.3%                  | 92.5 <b>%</b>        | 96.3%                   | 97.5%   |

Introduction RodoSol Cross-Dataset Synthetic Data Near-Duplicates Dataset Bias Conclusions 00000000000

## Results (Qualitative)



ViTSTR-Base: AIQ1Q56 (0.93) STAR-Net: ATQ1056 (0.59) TRBA: AIQ1056 (0.98) CR-NET: AIQ1056 (0.82)

RARE: AIQ1056 (0.92) Fusion MV-HC: AIQ1056



ViTSTR-Base: ASST8D (0.53) STAR-Net: AS5180 (0.82) TRBA: AS5180 (0.60) CR-NET: AS518D (0.83) RARE: ASST8D (0.79)

Fusion MV-HC: AS5I8D



ViTSTR-Base: 4NTU770 (0.45) STAR-Net: 4NIU770 (0.94) TRRA: 4NTII770 (0.99) CR-NET: 4NTU770 (0.91) RARE: 4NIU770 (0.99)

Fusion MV-HC: 4NIU770



ViTSTR-Base: 5EZZ29 (0.51) STAR-Net: SEZ229 (0.74) TRBA: 5EZ229 (0.99) CR-NET: 5EZ229 (0.88) RARE: 5EZ229 (0.88)

Fusion MV-HC: 5EZ229

ViTSTR\_Base: KRM7F95 (0.99) STAR-Net: KRH7E95 (0.59) TRBA: KRM7E95 (0.51) CR-NET: KRH7E95 (0.73)

RARE: KRM7E95 (0.60) Fusion MV-HC: KRM7E95



ViTSTR\_Base: V88096 (0.94) STAR-Net: Y68096 (0.93) TRBA: Y88096 (0.97) CR-NET: Y96096 (0.75) RARE: YS8096 (0.67)

Fusion MV-HC: Y88096



ViTSTR\_Rase: HIP4594 (0.98) STAR-Net: HLP4594 (0.97) TRBA: HLPA594 (0.99) CR-NET: HLP4594 (0.85) RARE: HLPA59A (0.93)

Fusion MV-HC: HLP4594



ViTSTR\_Base: MRII3095 (0.97) STAR-Net: MR03095 (0.98) TRBA: MRD3095 (0.72)

CR-NET: MRD3095 (0.94) RARE: MRD3095 (0.87)

Fusion MV-HC: MRD3095

Predictions obtained using multiple models individually and through the best fusion approach.

Introduction RodoSol Cross-Dataset Synthetic Data Near-Duplicates Dataset Bias Conclusions 00000000000

## Results (Qualitative)



ViTSTR-Base: AIQ1056 (0.93) STAR-Net: ATQ1056 (0.59) TRBA: ATQ1056 (0.98) CR-NET: AIQ1056 (0.82)

RARE: AIQ1056 (0.92) Fusion MV-HC: AIQ1056



ViTSTR-Base: ASST8D (0.53) STAR-Net: AS5180 (0.82) TRBA: AS5180 (0.60) CR-NET: AS518D (0.83) RARE: ASST8D (0.79)

Fusion MV-HC: AS5T8D



ViTSTR-Base: 4NTU770 (0.45) STAR-Net: 4NIU770 (0.94) TRBA: 4NTU770 (0.99) CR-NET: 4NTU770 (0.91) RARE: 4NIU770 (0.99)

Fusion MV-HC: 4NTU770



ViTSTR-Base: 5E7729 (0.51) STAR-Net: SEZ229 (0.74) TRBA: 5EZ229 (0.99) CR-NET: 5EZ229 (0.88) RARE: 5EZ229 (0.88)

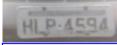


ViTSTR-Base: KRM7E95 (0.99) STAR-Net: KRH7E95 (0.59) TRBA: KRM7E95 (0.51) CR-NET: KRH7E95 (0.73) RARE: KRM7E95 (0.60)

Fusion MV-HC: KRM7E95



ViTSTR-Base: Y88096 (0.94) STAR-Net: Y68096 (0.93) TRBA: Y88096 (0.97) CR-NET: Y96096 (0.75) RARE: YS8096 (0.67) Fusion MV-HC: Y88096



ViTSTR-Base: HLP459A (0.98) STAR-Net: HLP4594 (0.97) TRBA: HLPA594 (0.99) CR-NET: HLP4594 (0.85) RARE: HLPA59A (0.93) Fusion MV-HC: HLP4594



ViTSTR-Base: MRU3095 (0.97) STAR-Net: MR03095 (0.98) TRBA: MRD3095 (0.72)

CR-NET: MRD3095 (0.94) RARE: MRD3095 (0.87)

Fusion MV-HC: 5EZ229

Fusion MV-HC: MRD3095

Model fusion can produce accurate predictions even in cases where most models exhibit prediction errors.

Introduction RodoSol Cross-Dataset Model Fusion Synthetic Data Near-Duplicates Dataset Bias Conclusions

### Results

Average results obtained across the datasets by combining the output of the top N models.

| OCR Models               | НС    | MV-BM | MV-HC | MVCP-BM | MVCP-HC |
|--------------------------|-------|-------|-------|---------|---------|
| Top 1 (ViTSTR-Base)      | 92.4% | 92.4% | 92.4% | 92.4%   | 92.4%   |
| Top 2 (+ STAR-Net)       | 94.1% | 92.4% | 94.1% | 92.4%   | 94.1%   |
| Top 3 (+ TRBA)           | 94.2% | 94.6% | 94.9% | 94.2%   | 94.2%   |
| Top 4 (+ CR-NET)         | 95.2% | 95.9% | 96.3% | 94.8%   | 95.9%   |
| Top 5 (+ RARE)           | 95.5% | 96.1% | 96.6% | 96.1%   | 96.2%   |
| Top 6 (+ Fast-OCR)       | 96.0% | 97.1% | 97.0% | 96.7%   | 96.9%   |
| Top 7 (+ Rosetta)        | 95.4% | 97.3% | 97.2% | 97.1%   | 97.0%   |
| Top 8 (+ Holistic-CNN)   | 95.7% | 97.5% | 97.6% | 96.1%   | 97.2%   |
| Top 9 (+ GRCNN)          | 95.7% | 97.5% | 97.5% | 97.2%   | 97.5%   |
| Top $10 (+ R^2AM)$       | 95.5% | 97.4% | 97.2% | 96.1%   | 96.6%   |
| Top 11 (+ CRNN)          | 95.2% | 97.1% | 97.0% | 96.5%   | 96.5%   |
| Top 12 (+ Multi-Task-LR) | 95.0% | 97.0% | 97.0% | 95.5%   | 96.5%   |

• The best results were reached using the <u>sequence-level majority vote approaches</u> (MV-\*).

Average results obtained across the datasets by combining the output of the top N models.

| OCR Models               | HC    | MV-BM | MV-HC | MVCP-BM | MVCP-HC |
|--------------------------|-------|-------|-------|---------|---------|
| Top 1 (ViTSTR-Base)      | 92.4% | 92.4% | 92.4% | 92.4%   | 92.4%   |
| Top 2 (+ STAR-Net)       | 94.1% | 92.4% | 94.1% | 92.4%   | 94.1%   |
| Top 3 (+ TRBA)           | 94.2% | 94.6% | 94.9% | 94.2%   | 94.2%   |
| Top 4 (+ CR-NET)         | 95.2% | 95.9% | 96.3% | 94.8%   | 95.9%   |
| Top 5 (+ RARE)           | 95.5% | 96.1% | 96.6% | 96.1%   | 96.2%   |
| Top 6 (+ Fast-OCR)       | 96.0% | 97.1% | 97.0% | 96.7%   | 96.9%   |
| Top 7 (+ Rosetta)        | 95.4% | 97.3% | 97.2% | 97.1%   | 97.0%   |
| Top 8 (+ Holistic-CNN)   | 95.7% | 97.5% | 97.6% | 96.1%   | 97.2%   |
| Top 9 (+ GRCNN)          | 95.7% | 97.5% | 97.5% | 97.2%   | 97.5%   |
| Top $10 (+ R^2AM)$       | 95.5% | 97.4% | 97.2% | 96.1%   | 96.6%   |
| Top 11 (+ CRNN)          | 95.2% | 97.1% | 97.0% | 96.5%   | 96.5%   |
| Top 12 (+ Multi-Task-LR) | 95.0% | 97.0% | 97.0% | 95.5%   | 96.5%   |

- Selecting the prediction with the <u>highest confidence (HC)</u> led to suboptimal results.
  - All models tend to make incorrect predictions also with high confidence.

And in **cross-dataset** scenarios?

#### And in cross-dataset scenarios?

### OpenALPR-EU + 3 new datasets:







PKU (2017) CD-HARD (2018) CLPD (2021)

### Results achieved in <u>cross-dataset</u> setups.

| Test Dataset              | OpenALPR-EU | PKU     | CD-HARD | CLPD    | Average  |
|---------------------------|-------------|---------|---------|---------|----------|
| Approach                  | # 108       | # 2,253 | # 104   | # 1,200 | / Weldge |
| CR-NET                    | 96.3%       | 99.1%   | 58.7%   | 94.2%   | 87.1%    |
| CRNN                      | 93.5%       | 98.2%   | 31.7%   | 89.0%   | 78.1%    |
| Fast-OCR                  | 97.2%       | 99.2%   | 59.6%   | 94.4%   | 87.6%    |
| GRCNN                     | 87.0%       | 98.6%   | 38.5%   | 87.7%   | 77.9%    |
| Holistic-CNN              | 89.8%       | 98.6%   | 11.5%   | 90.2%   | 72.5%    |
| Multi-Task-LR             | 85.2%       | 97.4%   | 10.6%   | 86.8%   | 70.0%    |
| R <sup>2</sup> AM         | 88.9%       | 97.1%   | 20.2%   | 88.2%   | 73.6%    |
| RARE                      | 94.4%       | 98.3%   | 37.5%   | 92.4%   | 80.7%    |
| Rosetta                   | 90.7%       | 97.2%   | 14.4%   | 86.9%   | 72.3%    |
| STAR-Net                  | 97.2%       | 99.1%   | 48.1%   | 93.3%   | 84.4%    |
| TRBA                      | 93.5%       | 98.5%   | 35.6%   | 90.9%   | 79.6%    |
| ViTSTR-Base               | 89.8%       | 98.4%   | 22.1%   | 93.1%   | 75.9%    |
| Fusion HC ( <i>top</i> 6) | 95.4%       | 99.2%   | 48.1%   | 94.9%   | 84.4%    |
| Fusion MV–BM (top 8)      | 99.1%       | 99.7%   | 65.4%   | 97.0%   | 90.3%    |
| Fusion MV–HC (top 8)      | 99.1%       | 99.7%   | 65.4%   | 96.3%   | 90.1%    |
| Fusion MVCP-BM (top 9)    | 95.4%       | 99.7%   | 54.8%   | 95.5%   | 86.3%    |
| Fusion MVCP-HC (top 9)    | 97.2%       | 99.7%   | 57.7%   | 95.9%   | 87.6%    |
|                           |             |         |         |         |          |

### Results achieved in <u>cross-dataset</u> setups.

| Test Dataset           | OpenALPR-EU<br># 108 | PKU<br># 2,253 | CD-HARD<br># 104 | CLPD<br># 1,200 | Average |
|------------------------|----------------------|----------------|------------------|-----------------|---------|
| CR-NET                 | 96.3%                | 99.1%          | 58.7%            | 94.2%           | 87.1%   |
| CRNN                   | 93.5%                | 98.2%          | 31.7%            | 89.0%           | 78.1%   |
| Fast-OCR               | 97.2%                | 99.2%          | 59.6%            | 94.4%           | 87.6%   |
| GRCNN                  | 87.0%                | 98.6%          | 38.5%            | 87.7%           | 77.9%   |
| Holistic-CNN           | 89.8%                | 98.6%          | 11.5%            | 90.2%           | 72.5%   |
| Multi-Task-LR          | 85.2%                | 97.4%          | 10.6%            | 86.8%           | 70.0%   |
| R <sup>2</sup> AM      | 88.9%                | 97.1%          | 20.2%            | 88.2%           | 73.6%   |
| RARE                   | 94.4%                | 98.3%          | 37.5%            | 92.4%           | 80.7%   |
| Rosetta                | 90.7%                | 97.2%          | 14.4%            | 86.9%           | 72.3%   |
| STAR-Net               | 97.2%                | 99.1%          | 48.1%            | 93.3%           | 84.4%   |
| TRBA                   | 93.5%                | 98.5%          | 35.6%            | 90.9%           | 79.6%   |
| ViTSTR-Base            | 89.8%                | 98.4%          | 22.1%            | 93.1%           | 75.9%   |
|                        |                      | ======         |                  |                 |         |
| Fusion HC (top 6)      | 95.4%                | 99.2%          | 48.1%            | 94.9%           | 84.4%   |
| Fusion MV-BM (top 8)   | 99.1%                | 99.7%          | 65.4%            | 97.0%           | 90.3%   |
| Fusion MV–HC (top 8)   | 99.1%                | 99.7%          | 65.4%            | 96.3%           | 90.1%   |
| Fusion MVCP-BM (top 9) | 95.4%                | 99.7%          | 54.8%            | 95.5%           | 86.3%   |
| Fusion MVCP-HC (top 9) | 97.2%                | 99.7%          | 57.7%            | 95.9%           | 87.6%   |

### Results achieved in <u>cross-dataset</u> setups.

| Test Dataset           | OpenALPR-EU | PKU     | CD-HARD | CLPD    | Average |
|------------------------|-------------|---------|---------|---------|---------|
| Approach               | # 108       | # 2,253 | # 104   | # 1,200 |         |
| CR-NET                 | 96.3%       | 99.1%   | 58.7%   | 94.2%   | 87.1%   |
| CRNN                   | 93.5%       | 98.2%   | 31.7%   | 89.0%   | 78.1%   |
| Fast-OCR               | 97.2%       | 99.2%   | 59.6%   | 94.4%   | 87.6%   |
| GRCNN                  | 87.0%       | 98.6%   | 38.5%   | 87.7%   | 77.9%   |
| Holistic-CNN           | 89.8%       | 98.6%   | 11.5%   | 90.2%   | 72.5%   |
| Multi-Task-LR          | 85.2%       | 97.4%   | 10.6%   | 86.8%   | 70.0%   |
| R <sup>2</sup> AM      | 88.9%       | 97.1%   | 20.2%   | 88.2%   | 73.6%   |
| RARE                   | 94.4%       | 98.3%   | 37.5%   | 92.4%   | 80.7%   |
| Rosetta                | 90.7%       | 97.2%   | 14.4%   | 86.9%   | 72.3%   |
| STAR-Net               | 97.2%       | 99.1%   | 48.1%   | 93.3%   | 84.4%   |
| TRBA                   | 93.5%       | 98.5%   | 35.6%   | 90.9%   | 79.6%   |
| ViTSTR-Base            | 89.8%       | 98.4%   | 22.1%   | 93.1%   | 75.9%   |
| Fusion HC (top 6)      | 95.4%       | 99.2%   | 48.1%   | 94.9%   | 84.4%   |
| Fusion MV–BM (top 8)   | 99.1%       | 99.7%   | 65.4%   | 97.0%   | 90.3%   |
| Fusion MV–HC (top 8)   | 99.1%       | 99.7%   | 65.4%   | 96.3%   | 90.1%   |
| Fusion MVCP–BM (top 9) | 95.4%       | 99.7%   | 54.8%   | 95.5%   | 86.3%   |
| Fusion MVCP–HC (top 9) | 97.2%       | 99.7%   | 57.7%   | 95.9%   | 87.6%   |
| ` ' '                  |             |         |         |         |         |

## Results (Speed/Accuracy Trade-Off)

The number of FPS processed by each model independently and when incorporated into the ensembles. The reported time, measured in milliseconds per image, represents the average of 5 runs.

| Models                   | MV-HC | Indiv | idual | Fusion |     |  |
|--------------------------|-------|-------|-------|--------|-----|--|
| (ranked by accuracy)     | MV-HC | Time  | FPS   | Time   | FPS |  |
| Top 1 (ViTSTR-Base)      | 92.4% | 7.3   | 137   | 7.3    | 137 |  |
| Top 2 (+ STAR-Net)       | 94.1% | 7.1   | 141   | 14.4   | 70  |  |
| Top 3 (+ TRBA)           | 94.9% | 16.9  | 59    | 31.3   | 32  |  |
| Top 4 (+ CR-NET)         | 96.3% | 5.3   | 189   | 36.6   | 27  |  |
| Top 5 (+ RARE)           | 96.6% | 13.0  | 77    | 49.6   | 20  |  |
| Top 6 (+ Fast-OCR)       | 97.0% | 3.0   | 330   | 52.6   | 19  |  |
| Top 7 (+ Rosetta)        | 97.2% | 4.6   | 219   | 57.2   | 18  |  |
| Top 8 (+ Holistic-CNN)   | 97.6% | 2.5   | 399   | 59.7   | 17  |  |
| Top 9 (+ GRCNN)          | 97.5% | 8.5   | 117   | 68.2   | 15  |  |
| Top $10 (+ R^2AM)$       | 97.2% | 15.9  | 63    | 84.2   | 12  |  |
| Top 11 (+ CRNN)          | 97.0% | 2.9   | 343   | 87.1   | 11  |  |
| Top 12 (+ Multi-Task-LR) | 97.0% | 2.3   | 427   | 89.4   | 11  |  |

| Models<br>(ranked by <b>speed</b> ) | MV-HC | Indiv | idual | Fusion |     |
|-------------------------------------|-------|-------|-------|--------|-----|
|                                     |       | Time  | FPS   | Time   | FPS |
| Top 1 (Multi-Task-LR)               | 85.9% | 2.3   | 427   | 2.3    | 427 |
| Top 2 (+ Holistic-CNN)              | 90.2% | 2.5   | 399   | 4.9    | 206 |
| Top 3 (+ CRNN)                      | 91.1% | 2.9   | 343   | 7.8    | 129 |
| Top 4 (+ Fast-OCR)                  | 95.4% | 3.0   | 330   | 10.8   | 93  |
| Top 5 (+ Rosetta)                   | 96.0% | 4.6   | 219   | 15.4   | 65  |
| Top 6 (+ CR-NET)                    | 96.6% | 5.3   | 189   | 20.7   | 48  |
| Top 7 (+ STAR-Net)                  | 96.9% | 7.1   | 141   | 27.8   | 36  |
| Top 8 (+ ViTSTR-Base)               | 96.9% | 7.3   | 137   | 35.0   | 29  |
| Top 9 (+ GRCNN)                     | 97.1% | 8.5   | 117   | 43.6   | 23  |
| Top 10 (+ RARE)                     | 97.1% | 13.0  | 77    | 56.6   | 18  |
| Top 11 (+ R <sup>2</sup> AM)        | 97.1% | 15.9  | 63    | 72.5   | 14  |
| Top 12 (+ TRBA)                     | 97.1% | 16.9  | 59    | 89.4   | 11  |

• All experiments were conducted using an NVIDIA Quadro RTX 8000 GPU.

## Results (Speed/Accuracy Trade-Off)

The number of FPS processed by each model independently and when incorporated into the ensembles. The reported time, measured in milliseconds per image, represents the average of 5 runs.

| Models<br>(ranked by <b>accuracy</b> ) | MV-HC | Individual |     | Fusion |     |
|----------------------------------------|-------|------------|-----|--------|-----|
|                                        | MV-HC | Time       | FPS | Time   | FPS |
| Top 1 (ViTSTR-Base)                    | 92.4% | 7.3        | 137 | 7.3    | 137 |
| Top 2 (+ STAR-Net)                     | 94.1% | 7.1        | 141 | 14.4   | 70  |
| Top 3 (+ TRBA)                         | 94.9% | 16.9       | 59  | 31.3   | 32  |
| Top 4 (+ CR-NET)                       | 96.3% | 5.3        | 189 | 36.6   | 27  |
| Top 5 (+ RARE)                         | 96.6% | 13.0       | 77  | 49.6   | 20  |
| Top 6 (+ Fast-OCR)                     | 97.0% | 3.0        | 330 | 52.6   | 19  |
| Top 7 (+ Rosetta)                      | 97.2% | 4.6        | 219 | 57.2   | 18  |
| Top 8 (+ Holistic-CNN)                 | 97.6% | 2.5        | 399 | 59.7   | 17  |
| Top 9 (+ GRCNN)                        | 97.5% | 8.5        | 117 | 68.2   | 15  |
| Top 10 (+ R <sup>2</sup> AM)           | 97.2% | 15.9       | 63  | 84.2   | 12  |
| Top 11 (+ CRNN)                        | 97.0% | 2.9        | 343 | 87.1   | 11  |
| Top 12 (+ Multi-Task-LR)               | 97.0% | 2.3        | 427 | 89.4   | 11  |

| Models                       | MV-HC | Indiv | Individual |      | Fusion |  |
|------------------------------|-------|-------|------------|------|--------|--|
| (ranked by <b>speed</b> )    |       | Time  | FPS        | Time | FPS    |  |
| Top 1 (Multi-Task-LR)        | 85.9% | 2.3   | 427        | 2.3  | 427    |  |
| Top 2 (+ Holistic-CNN)       | 90.2% | 2.5   | 399        | 4.9  | 206    |  |
| Top 3 (+ CRNN)               | 91.1% | 2.9   | 343        | 7.8  | 129    |  |
| Top 4 (+ Fast-OCR)           | 95.4% | 3.0   | 330        | 10.8 | 93     |  |
| Top 5 (+ Rosetta)            | 96.0% | 4.6   | 219        | 15.4 | 65     |  |
| Top 6 (+ CR-NET)             | 96.6% | 5.3   | 189        | 20.7 | 48     |  |
| Top 7 (+ STAR-Net)           | 96.9% | 7.1   | 141        | 27.8 | 36     |  |
| Top 8 (+ ViTSTR-Base)        | 96.9% | 7.3   | 137        | 35.0 | 29     |  |
| Top 9 (+ GRCNN)              | 97.1% | 8.5   | 117        | 43.6 | 23     |  |
| Top 10 (+ RARE)              | 97.1% | 13.0  | 77         | 56.6 | 18     |  |
| Top 11 (+ R <sup>2</sup> AM) | 97.1% | 15.9  | 63         | 72.5 | 14     |  |
| Top 12 (+ TRBA)              | 97.1% | 16.9  | 59         | 89.4 | 11     |  |

• Fusing the outputs of the three fastest models results in a lower recognition rate (91.1%) than using the best model alone (92.4%).

# Results (Speed/Accuracy Trade-Off)

The number of FPS processed by each model independently and when incorporated into the ensembles. The reported time, measured in milliseconds per image, represents the average of 5 runs.

| Models                       | MV-HC | Individual |     | Fusion |     |
|------------------------------|-------|------------|-----|--------|-----|
| (ranked by accuracy)         | WV-HC | Time       | FPS | Time   | FPS |
| Top 1 (ViTSTR-Base)          | 92.4% | 7.3        | 137 | 7.3    | 137 |
| Top 2 (+ STAR-Net)           | 94.1% | 7.1        | 141 | 14.4   | 70  |
| Top 3 (+ TRBA)               | 94.9% | 16.9       | 59  | 31.3   | 32  |
| Top 4 (+ CR-NET)             | 96.3% | 5.3        | 189 | 36.6   | 27  |
| Top 5 (+ RARE)               | 96.6% | 13.0       | 77  | 49.6   | 20  |
| Top 6 (+ Fast-OCR)           | 97.0% | 3.0        | 330 | 52.6   | 19  |
| Top 7 (+ Rosetta)            | 97.2% | 4.6        | 219 | 57.2   | 18  |
| Top 8 (+ Holistic-CNN)       | 97.6% | 2.5        | 399 | 59.7   | 17  |
| Top 9 (+ GRCNN)              | 97.5% | 8.5        | 117 | 68.2   | 15  |
| Top 10 (+ R <sup>2</sup> AM) | 97.2% | 15.9       | 63  | 84.2   | 12  |
| Top 11 (+ CRNN)              | 97.0% | 2.9        | 343 | 87.1   | 11  |
| Top 12 (+ Multi-Task-LR)     | 97.0% | 2.3        | 427 | 89.4   | 11  |

| Models<br>(ranked by <b>speed</b> ) | MV-HC | Indiv | dual F | Fus  | usion |  |
|-------------------------------------|-------|-------|--------|------|-------|--|
|                                     | WV-HC | Time  | FPS    | Time | FPS   |  |
| Top 1 (Multi-Task-LR)               | 85.9% | 2.3   | 427    | 2.3  | 427   |  |
| Top 2 (+ Holistic-CNN)              | 90.2% | 2.5   | 399    | 4.9  | 206   |  |
| Top 3 (+ CRNN)                      | 91.1% | 2.9   | 343    | 7.8  | 129   |  |
| Top 4 (+ Fast-OCR)                  | 95.4% | 3.0   | 330    | 10.8 | 93    |  |
| Top 5 (+ Rosetta)                   | 96.0% | 4.6   | 219    | 15.4 | 65    |  |
| Top 6 (+ CR-NET)                    | 96.6% | 5.3   | 189    | 20.7 | 48    |  |
| Top 7 (+ STAR-Net)                  | 96.9% | 7.1   | 141    | 27.8 | 36    |  |
| Top 8 (+ ViTSTR-Base)               | 96.9% | 7.3   | 137    | 35.0 | 29    |  |
| Top 9 (+ GRCNN)                     | 97.1% | 8.5   | 117    | 43.6 | 23    |  |
| Top 10 (+ RARE)                     | 97.1% | 13.0  | 77     | 56.6 | 18    |  |
| Top 11 $(+ R^2AM)$                  | 97.1% | 15.9  | 63     | 72.5 | 14    |  |
| Top 12 (+ TRBA)                     | 97.1% | 16.9  | 59     | 89.4 | 11    |  |

• Combining 4-6 fast models appears to be the optimal choice for striking a better balance between speed and accuracy.

- Substantial benefits of fusion approaches in both intra- and cross-dataset setups;
  - Optimal fusion approach → Majority Vote at the sequence level;
  - Intra-dataset: 92.4%  $\rightarrow$  97.6% || Cross-dataset: 87.6%  $\rightarrow$  90.3%;

### Highlights<sup>1</sup>

- Substantial benefits of fusion approaches in both intra- and cross-dataset setups;
  - Optimal fusion approach → Majority Vote at the sequence level;
  - Intra-dataset: 92.4%  $\rightarrow$  97.6% || Cross-dataset: 87.6%  $\rightarrow$  90.3%;
- For applications where the recognition task can tolerate some additional time, though not excessively, an effective strategy is to combine 4-6 fast models.
  - These 4-6 models may not be the most accurate individually, but their fusion strikes an appealing balance between speed and accuracy.

## Recap - Hypothesis and Research Questions

### **Hypothesis**

It is possible to significantly improve the state of the art in ALPR without increasing the number of real training images, designing groundbreaking descriptors, or extensively searching for better model architectures.

### Some questions that guide our research are:

- How can we address the lack of attention given to images featuring Mercosur LPs?
- Do current methods for detecting and recognizing LPs generalize well to unseen data?
- Can we significantly improve results by combining the outputs of various OCR models?
- To what extent does combining real data with synthetic data improve LPR accuracy?

Introduction

Advancing Multinational License Plate Recognition Through Synthetic and Real Data Fusion: A Comprehensive Evaluation

# Synthetic Data – Templates



Examples of template-based LP images we created for this study.

# Synthetic Data – Character Permutation



Examples of LP images created via character permutation.

# Synthetic Data – Generative Adversarial Network (GAN)

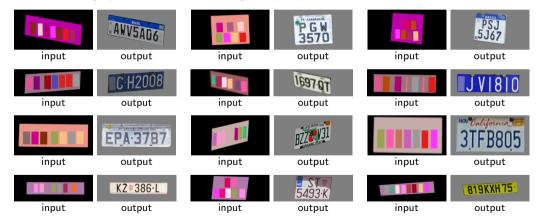
### pix2pix (https://phillipi.github.io/pix2pix/)

• Paired image-to-image translation:



# Synthetic Data – GAN Training

#### Examples of image pairs used for training the pix2pix model:



## Synthetic Data – GAN

### Not all images meet satisfactory quality standards!

### Examples of well-generated images:







### Examples of poorly generated images:







 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data occosion
 Near-Duplicates
 Dataset Bias occosion
 Conclusions occosion

# 

#### Not all images meet satisfactory quality standards!

#### Examples of well-generated images:







### Examples of poorly generated images:







We applied the <u>Fast-OCR</u> model to distinguish between well and poorly generated images.

# Synthetic Data – GAN

Examples of selected images from those generated using pix2pix:



### Results

### All 16 models exhibited exceptional performance!

| Test                                | set # LPs       | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|-------------------------------------|-----------------|----------------------|--------------------|---------------------|--------------------|---------------|------------------------|----------------------|-------------------------|---------|
| CNNG (Fan and Zhao, 20              | )22)            | 97.8%                | 91.2%              | 96.7%               | 98.8%              | 99.1%         | 98.8%                  | 96.1%                | 97.1%                   | 96.9%   |
| CR-NET (Silva and Jung,             | 2020)           | 93.5%                | 96.1%              | 98.3%               | 96.9%              | 98.7%         | 98.0%                  | 89.3%                | 88.3% <sup>†</sup>      | 94.9%   |
| CRNN (Shi et al., 2017)             |                 | 93.5%                | 96.1%              | 96.7%               | 95.7%              | 98.8%         | 97.5%                  | 87.0%                | 92.2%                   | 94.7%   |
| Fast-OCR (Laroca et al.,            | 2021a)          | 95.7%                | 97.1%              | 95.0%               | 96.9%              | 98.7%         | 96.0%                  | 89.6%                | 88.1% <sup>†</sup>      | 94.6%   |
| GRCNN (Wang and Hu, 2               | 2017)           | 97.8%                | 99.0%              | 96.7%               | 98.8%              | 99.0%         | 97.9%                  | 87.4%                | 93.0%                   | 96.2%   |
| Holistic-CNN (Špaňhel et            | al., 2017)      | 95.7%                | 91.2%              | 93.3%               | 99.4%              | 99.3%         | 98.4%                  | 94.9%                | 97.9%                   | 96.3%   |
| Multi-Task (Gonçalves et            | al., 2018)      | 97.8%                | 94.1%              | 100.0%              | 98.8%              | 99.1%         | 98.6%                  | 93.3%                | 95.1%                   | 97.1%   |
| Multi-Task-LR (Gonçalves            | s et al., 2019) | 95.7%                | 93.1%              | 93.3%               | 100.0%             | 99.6%         | 97.5%                  | 94.6%                | 96.6%                   | 96.3%   |
| R <sup>2</sup> AM (Lee and Osindero | , 2016)         | 97.8%                | 94.1%              | 95.0%               | 98.8%              | 99.3%         | 99.3%                  | 90.6%                | 94.4%                   | 96.1%   |
| RARE (Shi et al., 2016)             | ,               | 97.8%                | 97.1%              | 98.3%               | 98.1%              | 99.4%         | 99.1%                  | 91.9%                | 96.5%                   | 97.3%   |
| Rosetta (Borisyuk et al., 2         | 2018)           | 95.7%                | 98.0%              | 98.3%               | 98.1%              | 98.7%         | 98.3%                  | 92.6%                | 96.0%                   | 97.0%   |
| STAR-Net (Liu et al., 201           | l6b)            | 97.8%                | 99.0%              | 98.3%               | 98.1%              | 99.1%         | 99.3%                  | 94.7%                | 97.0%                   | 97.9%   |
| TRBA (Baek et al., 2019)            | ) _             | 97.8%                | 99.0%              | 98.3%               | 98.8%              | 98.8%         | 99.3%                  | 94.0%                | 97.3%                   | 97.9%   |
| ViTSTR-Base (Atienza, 2             | 021b)           | 95.7%                | 96.1%              | 93.3%               | 99.4%              | 99.9%         | 99.4%                  | 94.6%                | 97.7%                   | 97.0%   |
| ViTSTR-Small (Atienza,              | 2021b)          | 95.7%                | 96.1%              | 98.3%               | 98.1%              | 99.1%         | 98.5%                  | 94.9%                | 96.8%                   | 97.2%   |
| ViTSTR-Tiny (Atienza, 2             | 021b)           | 93.5%                | 95.1%              | 91.7%               | 98.8%              | 99.0%         | 98.9%                  | 92.3%                | 95.3%                   | 95.5%   |
| Average                             |                 | 96.2%                | 95.8%              | 96.4%               | 98.3%              | 99.1%         | 98.4%                  | 92.4%                | 94.9%                   | 96.4%   |

<sup>†</sup>Images from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character's bounding box needs to be labeled for training them.

### Results

#### All 16 models exhibited exceptional performance!

| Test set # LPs                             | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|--------------------------------------------|----------------------|--------------------|---------------------|--------------------|---------------|------------------------|----------------------|-------------------------|---------|
| CNNG (Fan and Zhao, 2022)                  | 97.8%                | 91.2%              | 96.7%               | 98.8%              | 99.1%         | 98.8%                  | 96.1%                | 97.1%                   | 96.9%   |
| CR-NET (Silva and Jung, 2020)              | 93.5%                | 96.1%              | 98.3%               | 96.9%              | 98.7%         | 98.0%                  | 89.3%                | 88.3% <sup>†</sup>      | 94.9%   |
| CRNN (Shi et al., 2017)                    | 93.5%                | 96.1%              | 96.7%               | 95.7%              | 98.8%         | 97.5%                  | 87.0%                | 92.2%                   | 94.7%   |
| Fast-OCR (Laroca et al., 2021a)            | 95.7%                | 97.1%              | 95.0%               | 96.9%              | 98.7%         | 96.0%                  | 89.6%                | 88.1% <sup>†</sup>      | 94.6%   |
| GRCNN (Wang and Hu, 2017)                  | 97.8%                | 99.0%              | 96.7%               | 98.8%              | 99.0%         | 97.9%                  | 87.4%                | 93.0%                   | 96.2%   |
| Holistic-CNN (Špaňhel et al., 2017)        | 95.7%                | 91.2%              | 93.3%               | 99.4%              | 99.3%         | 98.4%                  | 94.9%                | 97.9%                   | 96.3%   |
| Multi-Task (Gonçalves et al., 2018)        | 97.8%                | 94.1%              | 100.0%              | 98.8%              | 99.1%         | 98.6%                  | 93.3%                | 95.1%                   | 97.1%   |
| Multi-Task-LR (Gonçalves et al., 2019)     | 95.7%                | 93.1%              | 93.3%               | 100.0%             | 99.6%         | 97.5%                  | 94.6%                | 96.6%                   | 96.3%   |
| R <sup>2</sup> AM (Lee and Osindero, 2016) | 97.8%                | 94.1%              | 95.0%               | 98.8%              | 99.3%         | 99.3%                  | 90.6%                | 94.4%                   | 96.1%   |
| RARE (Shi et al., 2016)                    | 97.8%                | 97.1%              | 98.3%               | 98.1%              | 99.4%         | 99.1%                  | 91.9%                | 96.5%                   | 97.3%   |
| Rosetta (Borisyuk et al., 2018)            | 95.7%                | 98.0%              | 98.3%               | 98.1%              | 98.7%         | 98.3%                  | 92.6%                | 96.0%                   | 97.0%   |
| STAR-Net (Liu et al., 2016b)               | 97.8%                | 99.0%              | 98.3%               | 98.1%              | 99.1%         | 99.3%                  | 94.7%                | 97.0%                   | 97.9%   |
| TRBA (Baek et al., 2019)                   | 97.8%                | 99.0%              | 98.3%               | 98.8%              | 98.8%         | 99.3%                  | 94.0%                | 97.3%                   | 97.9%   |
| ViTSTR-Base (Atienza, 2021b)               | 95.7%                | 96.1%              | 93.3%               | 99.4%              | 99.9%         | 99.4%                  | 94.6%                | 97.7%                   | 97.0%   |
| ViTSTR-Small (Atienza, 2021b)              | 95.7%                | 96.1%              | 98.3%               | 98.1%              | 99.1%         | 98.5%                  | 94.9%                | 96.8%                   | 97.2%   |
| ViTSTR-Tiny (Atienza, 2021b)               | 93.5%                | 95.1%              | 91.7%               | 98.8%              | 99.0%         | 98.9%                  | 92.3%                | 95.3%                   | 95.5%   |
| Average                                    | 96.2%                | 95.8%              | 96.4%               | 98.3%              | 99.1%         | 98.4%                  | 92.4%                | 94.9%                   | 96.4%   |

<sup>†</sup>Images from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character's bounding box needs to be labeled for training them.

### Results

#### All 16 models exhibited exceptional performance!

| Test set # LPs                             | Caltech Cars<br># 46 | EnglishLP<br># 102 | UCSD-Stills<br># 60 | ChineseLP<br># 161 | AOLP<br># 687 | SSIG-SegPlate<br># 804 | UFPR-ALPR<br># 1,800 | RodoSol-ALPR<br># 8,000 | Average |
|--------------------------------------------|----------------------|--------------------|---------------------|--------------------|---------------|------------------------|----------------------|-------------------------|---------|
| CNNG (Fan and Zhao, 2022)                  | 97.8%                | 91.2%              | 96.7%               | 98.8%              | 99.1%         | 98.8%                  | 96.1%                | 97.1%                   | 96.9%   |
| CR-NET (Silva and Jung, 2020)              | 93.5%                | 96.1%              | 98.3%               | 96.9%              | 98.7%         | 98.0%                  | 89.3%                | 88.3% <sup>†</sup>      | 94.9%   |
| CRNN (Shi et al., 2017)                    | 93.5%                | 96.1%              | 96.7%               | 95.7%              | 98.8%         | 97.5%                  | 87.0%                | 92.2%                   | 94.7%   |
| Fast-OCR (Laroca et al., 2021a)            | 95.7%                | 97.1%              | 95.0%               | 96.9%              | 98.7%         | 96.0%                  | 89.6%                | 88.1% <sup>†</sup>      | 94.6%   |
| GRCNN (Wang and Hu, 2017)                  | 97.8%                | 99.0%              | 96.7%               | 98.8%              | 99.0%         | 97.9%                  | 87.4%                | 93.0%                   | 96.2%   |
| Holistic-CNN (Špaňhel et al., 2017)        | 95.7%                | 91.2%              | 93.3%               | 99.4%              | 99.3%         | 98.4%                  | 94.9%                | 97.9%                   | 96.3%   |
| Multi-Task (Gonçalves et al., 2018)        | 97.8%                | 94.1%              | 100.0%              | 98.8%              | 99.1%         | 98.6%                  | 93.3%                | 95.1%                   | 97.1%   |
| Multi-Task-LR (Gonçalves et al., 2019)     | 95.7%                | 93.1%              | 93.3%               | 100.0%             | 99.6%         | 97.5%                  | 94.6%                | 96.6%                   | 96.3%   |
| R <sup>2</sup> AM (Lee and Osindero, 2016) | 97.8%                | 94.1%              | 95.0%               | 98.8%              | 99.3%         | 99.3%                  | 90.6%                | 94.4%                   | 96.1%   |
| RARE (Shi et al., 2016)                    | 97.8%                | 97.1%              | 98.3%               | 98.1%              | 99.4%         | 99.1%                  | 91.9%                | 96.5%                   | 97.3%   |
| Rosetta (Borisyuk et al., 2018)            | 95.7%                | 98.0%              | 98.3%               | 98.1%              | 98.7%         | 98.3%                  | 92.6%                | 96.0%                   | 97.0%   |
| STAR-Net (Liu et al., 2016b)               | 97.8%                | 99.0%              | 98.3%               | 98.1%              | 99.1%         | 99.3%                  | 94.7%                | 97.0%                   | 97.9%   |
| TRBA (Baek et al., 2019)                   | 97.8%                | 99.0%              | 98.3%               | 98.8%              | 98.8%         | 99.3%                  | 94.0%                | 97.3%                   | 97.9%   |
| ViTSTR-Base (Atienza, 2021b)               | 95.7%                | 96.1%              | 93.3%               | 99.4%              | 99.9%         | 99.4%                  | 94.6%                | 97.7%                   | 97.0%   |
| ViTSTR-Small (Atienza, 2021b)              | 95.7%                | 96.1%              | 98.3%               | 98.1%              | 99.1%         | 98.5%                  | 94.9%                | 96.8%                   | 97.2%   |
| ViTSTR-Tiny (Atienza, 2021b)               | 93.5%                | 95.1%              | 91.7%               | 98.8%              | 99.0%         | 98.9%                  | 92.3%                | 95.3%                   | 95.5%   |
| Model Fusion MV-HC (top 8)                 | 97.8%                | 99.0%              | 100.0%              | 99.4%              | 99.6%         | 100.0%                 | 98.4%                | 98.7%                   | 99.1%   |

<sup>†</sup>Images from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character's bounding box needs to be labeled for training them.

# Results – Synergistic Effect

Average recognition rates obtained across all models and datasets with different types of images included in the training set.

| Real Images<br>+ data aug. | Templates | Permutation | GAN<br>(pix2pix) | Average | Average (rect.) |
|----------------------------|-----------|-------------|------------------|---------|-----------------|
|                            | ✓         |             |                  | 42.5%   | 46.5%           |
| ✓                          |           |             |                  | 84.5%   | 88.1%           |
| ✓                          |           | ✓           |                  | 91.4%   | 93.6%           |
| ✓                          | ✓         |             |                  | 92.5%   | 94.7%           |
| ✓                          |           |             | ✓                | 93.2%   | 95.2%           |
| ✓                          | ✓         | ✓           |                  | 93.8%   | 95.5%           |
| ✓                          |           | ✓           | ✓                | 94.0%   | 95.6%           |
| ✓                          | ✓         |             | ✓                | 94.1%   | 95.8%           |
| ✓                          | ✓         | ✓           | ✓                | 94.9%   | 96.4%           |

# Results – Synergistic Effect

Average recognition rates obtained across all models and datasets with different types of images included in the training set.

| Real Images<br>+ data aug. | Templates | Permutation | GAN<br>(pix2pix) | Average | Average (rect.) |
|----------------------------|-----------|-------------|------------------|---------|-----------------|
|                            | ✓         |             |                  | 42.5%   | 46.5%           |
| ✓                          |           |             |                  | 84.5%   | 88.1%           |
| ✓                          |           | ✓           |                  | 91.4%   | 93.6%           |
| ✓                          | ✓         |             |                  | 92.5%   | 94.7%           |
| ✓                          |           |             | ✓                | 93.2%   | 95.2%           |
| ✓                          | ✓         | ✓           |                  | 93.8%   | 95.5%           |
| ✓                          |           | ✓           | ✓                | 94.0%   | 95.6%           |
| ✓                          | ✓         |             | ✓                | 94.1%   | 95.8%           |
| <b>✓</b>                   | ✓         | ✓           | ✓                | 94.9%   | 96.4%           |

# Results – Limited Training Data

Average recognition rates obtained by STAR-Net and TRBA when trained with reduced portions of the original training data.

| Real Images                                     | 100%  | 50%   | 25%   | 10%   | 5%    | 1%    |
|-------------------------------------------------|-------|-------|-------|-------|-------|-------|
| STAR-Net (no synthetic) STAR-Net (w/ synthetic) | 95.3% | 62.0% | 18.3% | 1.3%  | 0.2%  | 0.0%  |
|                                                 | 97.9% | 95.8% | 94.7% | 94.6% | 93.6% | 86.4% |
| TRBA (no synthetic) TRBA (w/ synthetic)         | 93.7% | 74.0% | 23.9% | 0.9%  | 0.2%  | 0.0%  |
|                                                 | 97.9% | 97.0% | 96.0% | 94.5% | 94.3% | 87.9% |

# Results – Limited Training Data

Average recognition rates obtained by STAR-Net and TRBA when trained with reduced portions of the original training data.

| Real Images                                     | 100%  | 50%   | 25%   | 10%   | 5%    | 1%    |
|-------------------------------------------------|-------|-------|-------|-------|-------|-------|
| STAR-Net (no synthetic) STAR-Net (w/ synthetic) | 95.3% | 62.0% | 18.3% | 1.3%  | 0.2%  | 0.0%  |
|                                                 | 97.9% | 95.8% | 94.7% | 94.6% | 93.6% | 86.4% |
| TRBA (no synthetic) TRBA (w/ synthetic)         | 93.7% | 74.0% | 23.9% | 0.9%  | 0.2%  | 0.0%  |
|                                                 | 97.9% | 97.0% | 96.0% | 94.5% | 94.3% | 87.9% |

# Results (Cross-Dataset)

Comparison of the recognition rates obtained by our best approach, state-of-the-art methods, and commercial systems on the CLPD and PKU datasets (<u>cross-dataset experiments</u>).

| Approach             | Real images of Chinese<br>LPs used for training | Multinational | Recognition Ra<br>CLPD PK |       |
|----------------------|-------------------------------------------------|---------------|---------------------------|-------|
| Sighthound (2023)    | ?                                               | 1             | 85.2%                     | 89.3% |
| Zhang et al. (2021c) | 100,000+                                        |               | 87.6%                     | 90.5% |
| Fan and Zhao (2022)  | 100,000+                                        | ✓             | 88.5%                     | 92.5% |
| Ours                 | 506                                             | ✓             | 90.1%                     | 96.8% |
| Rao et al. (2024)    | 4,444                                           |               | 91.4%                     | 96.1% |
| Liu et al. (2021)    | 10,000                                          |               | 91.7%                     | _     |
| OpenALPR (2023)      | ?                                               |               | 91.8%                     | 96.0% |
| Chen et al. (2023)   | 100,000+                                        |               | 92.4%                     | 92.8% |
| Ke et al. (2023)     | 100,000+                                        |               | 93.2%                     | _     |
| Zou et al. (2020)    | 100,000+                                        |               | 94.0%                     | 96.6% |
| Zou et al. (2022)    | 100,000+                                        |               | 94.5%                     | _     |
| Wang et al. (2022b)  | 100,000+                                        |               | 94.8%                     | _     |
| Wang et al. (2022c)  | 100,000+                                        |               | 95.3%                     | 96.9% |
| Ours + synthetic     | 506                                             | ✓             | 96.2%                     | 99.4% |

# Results (Cross-Dataset)

Comparison of the recognition rates obtained by our best approach, state-of-the-art methods, and commercial systems on the CLPD and PKU datasets (cross-dataset experiments).

|                                 |                                                 | (             | •                |                 |
|---------------------------------|-------------------------------------------------|---------------|------------------|-----------------|
| Approach                        | Real images of Chinese<br>LPs used for training | Multinational | Recognit<br>CLPD | ion Rate<br>PKU |
| Sighthound (2023)               | ?                                               | 1             | 85.2%            | 89.3%           |
| Zhang et al. (2021c)            | 100,000+                                        |               | 87.6%            | 90.5%           |
| Fan and Zhao (2022)             | 100,000+                                        | ✓             | 88.5%            | 92.5%           |
| Ours                            | 506                                             | /             | 90.1%            | 96.8%           |
| Rao et al. (2024)               | 4,444                                           |               | 91.4%            | 96.1%           |
| Liu et al. (2021)               | 10,000                                          |               | 91.7%            | _               |
| OpenALPR (2023)                 | ?                                               |               | 91.8%            | 96.0%           |
| Chen et al. (2023)              | 100,000+                                        |               | 92.4%            | 92.8%           |
| Ke et al. (2023)                | 100,000+                                        |               | 93.2%            | _               |
| Zou et al. (2020)               | 100,000+                                        |               | 94.0%            | 96.6%           |
| Zou et al. (2022)               | 100,000+                                        |               | 94.5%            | _               |
| Wang et al. (2022b)             | 100,000+                                        |               | 94.8%            | _               |
| Wang et al. (2022c)             | 100,000+                                        |               | 95.3%            | 96.9%           |
| Ours + synthetic                | 506                                             | ✓             | 96.2%            | 99.4%           |
| Ours + synthetic + model fusion | 506                                             | <i>y</i>      | 97.6%            | 99.6%           |

# Highlights

- A synergistic effect was observed when combining different synthesis methods;
  - State-of-the-art results in both intra- and cross-dataset scenarios;

## Highlights

- A synergistic effect was observed when combining different synthesis methods;
  - State-of-the-art results in both intra- and cross-dataset scenarios;
- Synthetic LP images proved highly effective in overcoming the challenges posed by limited training data;
  - Commendable results were attained even when using small fractions of the original data.

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 00000000000
 0000000000
 000000000
 000000000
 00000000
 00000000

## Highlights

- A synergistic effect was observed when combining different synthesis methods;
  - State-of-the-art results in both intra- and cross-dataset scenarios;
- Synthetic LP images proved highly effective in overcoming the challenges posed by limited training data;
  - Commendable results were attained even when using small fractions of the original data.
- Even better results are achieved by exploring both <u>synthetic data</u> and <u>model fusion</u>.

Automatic License Plate Recognition (ALPR):
Toward Improving the State of the Art and
Bridging the Gap Between Academia and Industry

Introduction

Do We Train on Test Data?
The Impact of Near-Duplicates on License Plate Recognition

## Near-Duplicates – AOLP dataset







(a) Subset AC

(b) Subset LE

(c) Subset RP







(d) Subset AC

(e) Subset AC

(f) Subset RP

In the split protocols traditionally adopted in the literature, some of these images are in the training set and others are in the test set.

# Near-Duplicates – CCPD dataset



Subset Base



Subset Base



t Base Subset Base
(a) Training set



Subset Base



Subset Challenge



ge Subset Challenge



allenge Subset Weather
(b) Test set



Subset Weather

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 0000000000
 0000
 000000000000
 000000000000
 00000000000
 0000000000
 000000000

## Research Question

#### Research Question

To what extent have such near-duplicates impacted the evaluation of deep learning-based models applied to LPR?

# Experimental Setup

We explored the two most popular datasets in the field:

- AOLP (https://github.com/avlab-cv/aolp);
- CCPD (https://github.com/detectrecog/ccpd).

# Experimental Setup

We explored the two most popular datasets in the field:

- AOLP (https://github.com/avlab-cv/aolp);
- CCPD (https://github.com/detectrecog/ccpd).

We created *fair splits* for each dataset, where:

- There are no duplicates in the training and test sets;
- The key characteristics of the original partitions are preserved as much as possible.

## Experimental Setup

We explored the two most popular datasets in the field:

- AOLP (https://github.com/avlab-cv/aolp);
- CCPD (https://github.com/detectrecog/ccpd).

We created *fair splits* for each dataset, where:

- There are no duplicates in the training and test sets;
- The key characteristics of the original partitions are preserved as much as possible.

We compared the performance of six OCR models under the <u>traditional</u> (adopted in previous works) and <u>fair</u> protocols:

| OCR Model    | Original Application      |  |  |  |  |
|--------------|---------------------------|--|--|--|--|
| CNNG         | License Plate Recognition |  |  |  |  |
| Holistic-CNN | License Plate Recognition |  |  |  |  |
| Multi-Task   | License Plate Recognition |  |  |  |  |
|              |                           |  |  |  |  |

| OCR Model   | Original Application   |
|-------------|------------------------|
| STAR-Net    | Scene Text Recognition |
| TRBA        | Scene Text Recognition |
| ViTSTR-Base | Scene Text Recognition |

### Results - AOLP

Results under the AOLP<sup>3</sup> (adopted in previous works) and AOLP-Fair (ours) protocols.

| Model        | $AOLP \uparrow$ | $AOLP\text{-}Fair\uparrow$ | Gap ↓ | Rel. Gap $\downarrow$ |
|--------------|-----------------|----------------------------|-------|-----------------------|
| CNNG         | 98.91%          | 96.80%                     | 2.11% | 193.6%                |
| Holistic-CNN | 98.42%          | 96.30%                     | 2.12% | 134.2%                |
| Multi-Task   | 98.42%          | 95.29%                     | 3.13% | 198.1%                |
| STAR-Net     | 98.47%          | 96.46%                     | 2.01% | 131.4%                |
| TRBA         | 98.75%          | 97.47%                     | 1.28% | 102.4%                |
| ViTSTR-Base  | 98.75%          | 97.31%                     | 1.44% | 115.2%                |

The error rates were more than twice as high in the experiments conducted under the <u>fair protocol</u>, which has no duplicates.

<sup>&</sup>lt;sup>3</sup> 67.6% of the test images have duplicates in the training set.

## Results – AOLP

Results under the AOLP<sup>3</sup> (adopted in previous works) and AOLP-Fair (ours) protocols.

| Model        | $AOLP \uparrow$ | $AOLP\text{-}Fair\uparrow$ | Gap ↓ | Rel. $Gap\downarrow$ |
|--------------|-----------------|----------------------------|-------|----------------------|
| CNNG         | 98.91%          | 96.80%                     | 2.11% | 193.6%               |
| Holistic-CNN | 98.42%          | 96.30%                     | 2.12% | 134.2%               |
| Multi-Task   | 98.42%          | 95.29%                     | 3.13% | 198.1%               |
| STAR-Net     | 98.47%          | 96.46%                     | 2.01% | 131.4%               |
| TRBA         | 98.75%          | 97.47%                     | 1.28% | 102.4%               |
| ViTSTR-Base  | 98.75%          | 97.31%                     | 1.44% | 115.2%               |

The error rates were more than twice as high in the experiments conducted under the fair protocol, which has no duplicates.

The ranking of the models **changed** when they were trained and tested under <u>fair splits</u>.

Best model:  $CNNG \rightarrow TRBA$ 

<sup>&</sup>lt;sup>3</sup> 67.6% of the test images have duplicates in the training set.

### Results – CCPD

Results achieved on the CCPD dataset under the standard<sup>4</sup> and CCPD-Fair protocols.

| Model        | CCPD ↑ | CCPD-Fair $\uparrow$ | Gap ↓ | Rel. Gap $\downarrow$ |
|--------------|--------|----------------------|-------|-----------------------|
| CNNG         | 88.24% | 86.93%               | 1.31% | 11.1%                 |
| Holistic-CNN | 77.01% | 75.41%               | 1.60% | 7.0%                  |
| Multi-Task   | 83.01% | 81.84%               | 1.17% | 6.9%                  |
| STAR-Net     | 78.53% | 73.33%               | 5.20% | 24.2%                 |
| TRBA         | 75.83% | 71.48%               | 4.35% | 18.0%                 |
| ViTSTR-Base  | 79.06% | 76.37%               | 2.69% | 12.9%                 |

 $<sup>^4</sup>$ CCPD's standard protocol: 19.1% of the test images have duplicates in the training set.

## Results - CCPD

Results achieved on the CCPD dataset under the standard<sup>4</sup> and CCPD-Fair protocols.

| Model        | CCPD ↑ | CCPD-Fair $\uparrow$ | $Gap\downarrow$ | Rel. Gap $\downarrow$ |
|--------------|--------|----------------------|-----------------|-----------------------|
| CNNG         | 88.24% | 86.93%               | 1.31%           | 11.1%                 |
| Holistic-CNN | 77.01% | 75.41%               | 1.60%           | 7.0%                  |
| Multi-Task   | 83.01% | 81.84%               | 1.17%           | 6.9%                  |
| STAR-Net     | 78.53% | 73.33%               | 5.20%           | 24.2%                 |
| TRBA         | 75.83% | 71.48%               | 4.35%           | 18.0%                 |
| ViTSTR-Base  | 79.06% | 76.37%               | 2.69%           | 12.9%                 |

### The CCPD dataset has $\approx$ 157K test images:

- The lowest performance gap of 1.17% translates to 1,800+ additional license plates being misrecognized under the <u>fair split</u> (vs. the standard one);
- The highest gap of **5.20%** represents a staggering number of **8,000+** more license plates being incorrectly recognized under the <u>fair split</u>.

<sup>&</sup>lt;sup>4</sup>CCPD's standard protocol: 19.1% of the test images have duplicates in the training set.

### Results – Overview

The high fraction of near-duplicates in the splits traditionally adopted in the literature may have hindered the development and acceptance of more efficient LPR models that have strong generalization abilities but do not memorize duplicates as well as other models.

 The list of <u>near-duplicates</u> we have found and proposals for <u>fair splits</u> are publicly available for further research at <a href="https://raysonlaroca.github.io/supp/lpr-train-on-test/">https://raysonlaroca.github.io/supp/lpr-train-on-test/</a> Introduction

A First Look at <u>Dataset Bias</u> in License Plate Recognition

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 000000000000
 00000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 00000000000
 000000000000
 000000000000
 000000000000
 0000000000

## Name that Dataset!

### Can you <u>name the dataset</u> to which each of these images belongs?



## Name that Dataset!



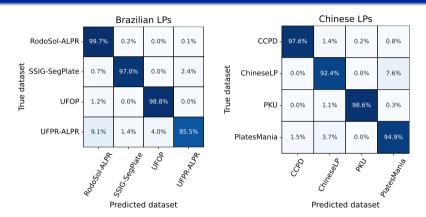
## Name that Dataset!



• A shallow CNN (3 conv. layers) predicts the correct dataset in more than 95% of cases<sup>5</sup>.

 $<sup>^{5}</sup>$ (chance is 1/4 = 25%)

## Results



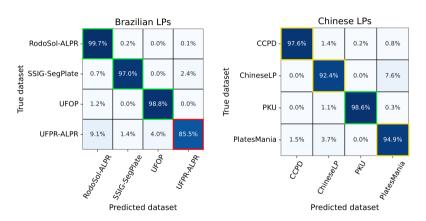
There is a clearly pronounced diagonal in both matrices, indicating that each dataset does have a unique, identifiable "signature."

The overall accuracy was 95.2% for Brazilian LPs and 95.9% for Chinese LPs.

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 00000000000
 00000000000
 0000000000
 000000000
 000000000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 000
 <td

## Results



The model is <u>more successful</u> in classifying LP images from the datasets acquired with <u>static</u> cameras than images from the datasets captured by <u>handheld</u> or <u>moving</u> cameras.

## Results

- Images from **static cameras** have many characteristics in common, not just the background.
  - These similarities are probably present to some extent in the LP regions.

## Results

- Images from static cameras have many characteristics in common, not just the background.
  - These similarities are probably present to some extent in the LP regions.



## Discussion

Most LPR models are probably learning and exploiting such signatures to improve the results achieved in seen datasets at the cost of losing generalization capability.

## Discussion

Most LPR models are probably learning and exploiting such signatures to improve the results achieved in seen datasets at the cost of losing generalization capability.

## SSIG-SegPlate:

• It has 563 LP images with the letter 'O' in the first position;









## Discussion

Most LPR models are probably learning and exploiting such signatures to improve the results achieved in seen datasets at the cost of losing generalization capability.

## SSIG-SegPlate:

• It has 563 LP images with the letter 'O' in the first position;



• It has **no** LP images with the letter 'Q' in the first position.

## Discussion

Most LPR models are probably learning and exploiting such signatures to improve the results achieved in seen datasets at the cost of losing generalization capability.

## SSIG-SegPlate:

It has 563 LP images with the letter 'O' in the first position;



• It has no LP images with the letter 'Q' in the first position.

#### Taking this into account:

• An LPR model capable of identifying that a given LP image belongs to the SSIG-SegPlate dataset may predict the letter 'O' as the first character even if the character looks more like 'Q' than 'O' due to noise, shadows, or other factors.

## Discussion

Most LPR models are probably learning and exploiting such signatures to improve the results achieved in seen datasets at the cost of losing generalization capability.

### SSIG-SegPlate:

It has 563 LP images with the letter 'O' in the first position;



• It has no LP images with the letter 'Q' in the first position.

#### Taking this into account:

- An LPR model capable of identifying that a given LP image belongs to the SSIG-SegPlate dataset may predict the letter 'O' as the first character even if the character looks more like 'Q' than 'O' due to noise, shadows, or other factors.
  - However, the potentially high recognition rates achieved in the *SSIG-SegPlate* dataset would likely not be reached in unseen datasets.

 Introduction
 RodoSol
 Cross-Dataset
 Model Fusion
 Synthetic Data
 Near-Duplicates
 Dataset Bias
 Conclusions

 000000000
 0000
 00000000000
 00000000000
 0000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 0000000000
 0000000000
 0000000000
 00000000000
 0000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 00000000000
 000000000000
 000000000000
 0000000000000
 000000000000
 000000000000
 00000000000
 00000000000
 000000000000
 00000000000
 00000000000000
 000000000000
 000000000000
 000000000000
 000000000000
 00000000000000
 00000000000000
 00000000000000
 000000000000000
 000000000000000
 0000000000000000
 00000000000000000
 000000000000000000000
 0000000000000000000000
 <t

## Discussion

#### Probable <u>causes</u> of dataset bias in the LPR context:

- The cameras used to collect the images in each dataset;
- How the images were **stored** in different datasets;
  - e.g., CCPD contains highly compressed images, while most other datasets do not.

## Discussion

#### Probable causes of dataset bias in the LPR context:

- The cameras used to collect the images in each dataset;
- How the images were stored in different datasets;
  - e.g., CCPD contains highly compressed images, while most other datasets do not.

#### Two initial ways to <u>mitigate</u> the dataset bias problem in LPR:

- Leveraging deep learning-based methods' high capability to visualize and understand how bias has crept into the datasets;
  - One technique that immediately comes to mind is <u>Grad-CAM</u>.
- To embrace the "wildness" of the **internet** to collect a large-scale dataset for LPR.
  - Multiple sources (e.g., multiple search engines and websites from various countries).



## Conclusions

# Automatic License Plate Recognition (ALPR): Toward Improving the State of the Art and Bridging the Gap Between Academia and Industry

#### RodoSol-ALPR

- Mercosur LPs
- Motorcycles & Two-row LPs

#### Model Fusion

- Majority Vote > Highest Conf.
- Combine 4-6 fast models for optimal speed/accuracy trade-off

#### Synthetic Data

- Templates, Permutation & GAN
- Synergistic effect
- Effective with limited real data

#### Cross-Dataset

- Major drops in performance
- Importance of RodoSol-ALPR

**Near-Duplicates** 

**Dataset Bias** 

## Thank you!

https://raysonlaroca.github.io/











