A First Look at Dataset Bias in License Plate Recognition

Rayson Laroca¹, Marcelo Santos¹, Valter Estevam^{1,2}, Eduardo Luz³, David Menotti¹

¹Federal University of Paraná, Curitiba, Brazil
²Federal Institute of Paraná, Irati, Brazil
³Federal University of Ouro Preto, Ouro Preto, Brazil

Is it possible to predict the dataset from which a license plate (LP) image belongs?

Introduction

Is it possible to predict the <u>dataset</u> from which a license plate (LP) image belongs?

• Initially, one may think that this task is <u>fairly trivial;</u>

• Images collected in <u>different regions</u>, with <u>different hardware</u>, for <u>different purposes</u>, etc.

Is it possible to predict the <u>dataset</u> from which a license plate (LP) image belongs?

- Initially, one may think that this task is fairly trivial;
- On second thought, one may realize that it depends on the datasets we are comparing.

Introduction

Is it possible to predict the <u>dataset</u> from which a license plate (LP) image belongs?

- Initially, one may think that this task is fairly trivial;
- On second thought, one may realize that it depends on the datasets we are comparing.

Dataset B (European LPs)

Introduction

Is it possible to predict the <u>dataset</u> from which a license plate (LP) image belongs?

- Initially, one may think that this task is fairly trivial;
- On second thought, one may realize that it depends on the datasets we are comparing.

In this case, it should be **quite straightforward** to distinguish which dataset each LP image belongs to due to <u>the many characteristics LPs from the same region/layout share in common</u>.

Research Question

Beyond the LP layout, are there **unique signatures (bias)** in each dataset that would enable identifying the source of an LP image?

Name that Dataset!

Can you name the dataset to which each of these images belongs?

Name that Dataset!

Can you name the dataset to which each of these images belongs?

SSIG-SegPlate (MG): (e), (i), (j), (o) UFPR-ALPR (PR): (c), (g), (k)

RodoSol-ALPR (ES): (a), (d), (h), (l) UFOP (MG): (b), (f), (m), (n)

Name that Dataset!

RodoSol-ALPR (ES): (a), (d), (h), (l) SSIG-SegPlate (MG): (e), (i), (j), (o) UFOP (MG): (b), (f), (m), (n) UFPR-ALPR (PR): (c), (g), (k)

• A shallow CNN (3 conv. layers) predicts the correct dataset in more than 95% of cases¹.

¹(chance is 1/4 = 25%)

1 Datasets;

- 2 Classification Model;
- 3 Results.

Dataset	Year	LP Images	State / Province-City
UFOP	2011	244	Minas Gerais 💁
ChineseLP	2012	400	Various 💴
SSIG-SegPlate	2016	1,832	Minas Gerais 📀
PKU	2017	2,024	Anhui-Tongling 💴
UFPR-ALPR	2018	2,700	Paraná 📀
CCPD	2020*	$25,000^{\dagger}$	Anhui-Hefei 💴
PlatesMania-CN	2021	347	Various 🔛
RodoSol-ALPR	2022	4,765	Espírito Santo 💁

The eight datasets used in our experiments.

* The CCPD dataset was introduced in 2018 and last updated in 2020.

[†] Following Liu et al. (2021), we used a reduced version of CCPD in our experiments.

• Many works in the literature are focused on LPs from **Brazil** and mainland China.

Experimental Setup - Chinese LPs

Some Chinese LPs from the datasets used in our experiments. From top to bottom: CCPD, ChineseLP, PKU and PlatesMania-CN.

• The first character on each LP is a Chinese character representing the province in which the vehicle is affiliated. The second character is an English letter representing the city.

Experimental Setup - Classification Model

- We designed a lightweight CNN architecture called **DC-NET**.
 - It runs at $\approx 720~FPS$ on an NVIDIA Quadro RTX 8000 GPU.

#	Layer	Filters	Size / Stride	Input	Output
0	conv	16	3 imes 3/1	192 imes 64 imes 3	192 imes 64 imes 16
1	max		$2 \times 2/2$	$192\times 64\times 16$	96 imes 32 imes 16
2	conv	32	3 imes 3/1	$96\times32\times16$	96 imes 32 imes 32
3	max		$2 \times 2/2$	$96\times32\times32$	48 imes 16 imes 32
4	conv	64	3 imes 3/1	$48\times16\times32$	48 imes 16 imes 64
5	max		$2 \times 2/2$	$48\times16\times64$	$24\times8\times64$
6	flatten			$24\times8\times64$	12288
#	Layer		Units	Input	Output
7	dense		128	12288	128
8	dense		4	128	4

DC-NET's layers and hyperparameters.

Results

There is a **clearly pronounced diagonal** in both matrices, indicating that **each dataset does have a unique, identifiable "signature."**

The overall accuracy was 95.2% for Brazilian LPs and 95.9% for Chinese LPs.

The DC-NET model is <u>more successful</u> in classifying LP images from the datasets acquired with <u>static</u> cameras than images from the datasets captured by <u>handheld</u> or <u>moving</u> cameras.

Results

- Images collected by **static cameras** have many characteristics in common, not just the background.
 - These similarities are probably present to some extent in the LP regions.

Results

- Images collected by **static cameras** have many characteristics in common, not just the background.
 - These similarities are probably present to some extent in the LP regions.

RodoSol-ALPR (MSE = 174)

RodoSol-ALPR (MSE = 407)

There are **no immediate signs of saturation**, i.e., the accuracy consistently improves as the size of the training set increases.

Results

The classifier predicts the source dataset of an LP image correctly with a significantly higher confidence value than when it predicts incorrectly².

²The mean confidence values for correctly classified Brazilian and Chinese LPs were 98.5% and 98.1%, respectively, while the mean confidence values for incorrectly classified Brazilian and Chinese LPs were 79.7% and 74.3%, respectively.

SSIG-SegPlate:

• It has 563 LP images with the letter 'O' in the first position;

SSIG-SegPlate:

• It has 563 LP images with the letter 'O' in the first position;

• It has no LP images with the letter 'Q' in the first position.

SSIG-SegPlate:

• It has 563 LP images with the letter 'O' in the first position;

• It has no LP images with the letter 'Q' in the first position.

Taking this into account:

- An LPR model capable of identifying that a given LP image belongs to the SSIG-SegPlate dataset **may predict the letter 'O' as the first character** <u>even if the character looks</u> <u>more like 'Q' than 'O' due to noise, shadows, or other factors</u>.
 - However, the potentially high recognition rates achieved in the *SSIG-SegPlate* dataset <u>would</u> <u>likely not be reached in unseen datasets</u>.

Probable causes of dataset bias in the LPR context:

- The cameras used to collect the images in each dataset;
- How the images were **stored** in different datasets;
 - e.g., the CCPD dataset contains highly compressed images, while most other datasets do not.
- How accurate the LP corner annotations are in different datasets.

Probable causes of dataset bias in the LPR context:

- The cameras used to collect the images in each dataset;
- How the images were **stored** in different datasets;
 - e.g., the CCPD dataset contains highly compressed images, while most other datasets do not.
- How accurate the LP corner annotations are in different datasets.

Two initial ways to <u>mitigate</u> the dataset bias problem in LPR:

- Leveraging deep learning-based methods' high capability to visualize and understand how bias has crept into the datasets;
 - One technique that immediately comes to mind is <u>Grad-CAM</u>.
- To embrace the "wildness" of the internet to collect a large-scale dataset for LPR.
 - <u>Multiple sources</u> (e.g., multiple search engines and websites from various countries).

- The results showed that each dataset does have a unique, identifiable signature;
 - The source dataset of an LP image could be predicted with more than 95% accuracy;
 - We observed <u>no evidence of saturation</u> as more training data was added.

- The results showed that each dataset does have a unique, identifiable signature;
 - The source dataset of an LP image could be predicted with more than 95% accuracy;
 - We observed <u>no evidence of saturation</u> as more training data was added.
- Researchers should evaluate LPR models in cross-dataset setups;
 - A better indication of generalization, hence real-world performance, than within-dataset ones.

Thank you! https://raysonlaroca.github.io/