# Real-Time Automatic License Plate Recognition Through Deep Multi-Task Networks

Gabriel Resende Gonçalves Matheus Alves Diniz Rayson Laroca David Menotti William Robson Schwartz



Federal University of Minas Gerais Federal University of Paraná

# Outline

- Introduction
- ALPR Approach
  - Detection Net
  - Recognition Net
- Data Augmentation
- SSIG-ALPR Dataset
- Experimental Evaluation
- Conclusion

Automatic License Plate Recognition (ALPR) consists on perform on-track license plate recognition.

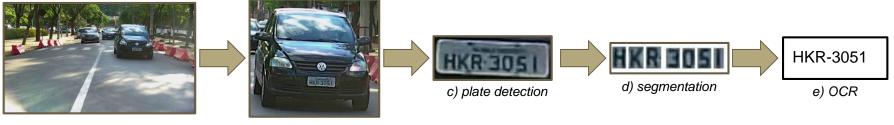
#### • Key challenges

- Handle multiple vehicles
- Execute on real-time
- Predict correctly the majority of vehicles





Usually, approaches divide license plate recognition into five subtasks and execute them in sequence:



a) image acquisition

b) vehicle detection

**Drawback:** errors resulting of each task are propagated to the next step through the entire ALPR workflow.

#### **Contributions:**

- → A new public available ALPR dataset
- → A new ALPR approach composed by two deep multi-task networks
- → Three techniques to augment the training data

#### Hypothesis:

- → We can overcome the error-rate propagation problem by performing ALPR with fewer tasks
- → Some ALPR tasks such as character segmentation do not need to be explicit performed

# **ALPR Approach**



Detection Network: detect on-road license plates directly on the frame

**Recognition Network:** recognize license plates with implicit segmentation



a) image acquisition



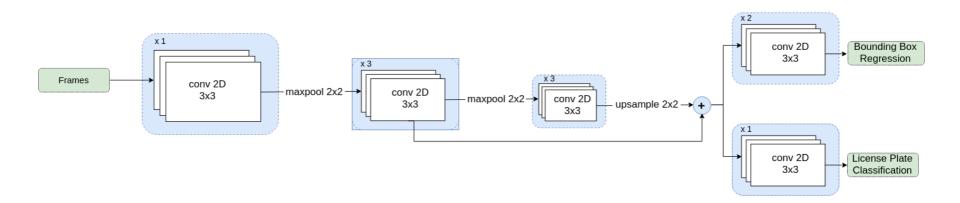


b) plate detection c)

c) plate recognition



#### **Detection Net**





#### **Detection Net**

Our loss penalizes regressions inside the license plate bounding box to **ensure all characters will be completely visible**.

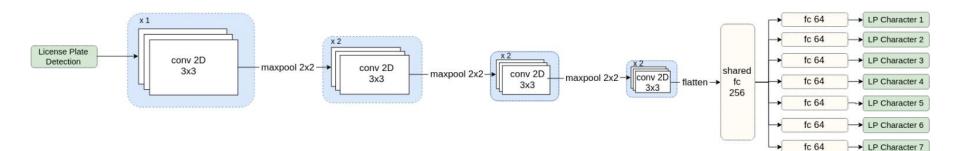


a) underdetection

a) overdetection



### **Recognition Net**



### Detection Net: Zoom

• We need to train all anchors to ensure robustness for multiple scales

• **Solution:** Zoom-in and zoom-out the frames



### **Recognition Net:** Character Permutation

- Every task of the proposed network has to learn the representation of each letter/digit
- Very hard due to the Brazilian license plate allocation policy

• Solution: Permutate license plate characters



### **Recognition Net:** Synthetic License Plates

• Since the permutations occur only between characters in the same plate, an undesired correlation between the characters in different positions was created

• **Solution:** Use synthetic license plates to train the fully-connected layers



### **SSIG-ALPR Dataset**

## **SSIG-ALPR**

#### **Proposed Dataset**

Our proposed dataset contains:

- **8,683** license plates images
- **815** different vehicles
- 3,368 images do not contain text annotation as they have very low resolution

#### 2 cameras







## **Experiments**

### **Overview**

- Detection Network Evaluation
- Recognition Network Evaluation
- Comparison with State-of-the-Art Approaches
  - **Baselines:** <u>Silva and Jung [2]</u>, <u>Gonçalves et al [3]</u>, <u>Laroca et al [4]</u>, <u>OpenALPR [5]</u>, <u>Sighthound [6]</u>
  - Two datasets: <u>SSIG-SegPlate [3]</u>, <u>UFPR-ALPR [4]</u>
  - Frame rate evaluation

<sup>[2]</sup> S. M. Silva and C. R. Jung, "Real-time brazilian license plate detection and recognition using deep convolutional neural networks" in SIBGRAPI, 2017.

<sup>[3]</sup> G. R. Gonçalves, D. Menotti, and W. R. Schwartz, "License plate recognition based on temporal redundancy" in ITSC, 2016.

<sup>[4]</sup> R. Laroca, E. Severo, L. A. Zanlorensi, L. S. Oliveira, G. R. Gonçalves, W. R. Schwartz, and D. Menotti, "A robust real-time automatic license plate recognition based on the YOLO detector" CoRR, 2018

<sup>[5]</sup> http://www.openalpr.com/

<sup>[6]</sup> http://www.sighthound.com/



### **Detection Network Evaluation**

| Approach        | Accuracy (%) |
|-----------------|--------------|
| no modification | 76.73        |
| loss only       | +1.74        |
| zoom only       | +1.95        |
| zoom + loss     | +2.59        |



### **Recognition Network Evaluation**

| Approach                | Accuracy (%) |
|-------------------------|--------------|
| no augmentation         | 82.96        |
| permutation only        | +0.76        |
| synthetic only          | -33.43       |
| permutation + synthetic | +2.64        |



### **Comparison with State-of-the-Art Approaches**

#### SSIG-SegPlate

- Static camera
- 2,000 images
- 101 vehicles



#### **UFPR-ALPR**

- Moving camera
- 4,500 images
- 150 vehicles





### **Comparison with State-of-the-Art Approaches**

| Approach             | SSIG-SegPlate (%) | UFPR-ALPR (%) |
|----------------------|-------------------|---------------|
| Silva and Jung [2]   | 63.1              | -             |
| Gonçalves et al. [3] | 81.8              | -             |
| Sighthound           | 73.1              | -             |
| OpenALPR             | 87.4              | 57.9          |
| Laroca et al. [4]    | 85.4              | 72.2          |
| Proposed Approach    | 88.8              | 55.6          |



Comparison with State-of-the-Art Approaches: Frame Rate Evaluation

| Approach             | Max # of license plates |
|----------------------|-------------------------|
| Silva and Jung [2]   | 3                       |
| Gonçalves et al. [3] | 1                       |
| Laroca et al. [4]    | 1                       |
| Proposed Approach    | 6                       |

## **Final Remarks**

# **Final Remarks**

- Data augmentation techniques are very helpful to improve the network learning process
- License plate detection **robustness is considerably diminished** when the images were acquired from a **non-static cameras**
- In SSIG-SegPlate, our approach was able to **outperform all baselines** composed by multiple steps using static background
- By creating two small networks, **we were able to run our approach with more 30 fps** even with 6 vehicles to recognize at the same time

- As future works:
  - Jointly train both networks
  - Apply our approach with other license plates layouts
  - Adapt the network to work with motorcycles

### Thank you

Contact us:

**Smart Sense Laboratory** Universidade Federal de Minas Gerais Belo Horizonte, Brazil

gabrielrg@dcc.ufmg.br http://www.smartsense.dcc.ufmg.br





#### Partners

