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Abstract—Super-resolution algorithms often struggle with im-
ages from surveillance environments due to adverse conditions
such as unknown degradation, variations in pose, irregular
illumination, and occlusions. However, acquiring multiple images,
even of low quality, is possible with surveillance cameras. In this
work, we develop an algorithm based on diffusion models that
utilize a low-resolution image combined with features extracted
from multiple low-quality images to generate a super-resolved
image while minimizing distortions in the individual’s identity.

Unlike other algorithms, our approach recovers facial features
without explicitly providing attribute information or without the
need to calculate a gradient of a function during the reconstruc-
tion process. To the best of our knowledge, this is the first time
multi-features combined with low-resolution images are used as
conditioners to generate more reliable super-resolution images
using stochastic differential equations. The FFHQ dataset was
employed for training, resulting in state-of-the-art performance in
facial recognition and verification metrics when evaluated on the
CelebA and Quis-Campi datasets. Our code is publicly available
at https://github.com/marcelowds/fasr.

I. INTRODUCTION

The problem of super-resolution (SR) is inherently ill-posed,
making the recovery of fine details like eyeglasses, beards,
mustaches, and a reliable identity quite challenging [1], [2].
For surveillance scenarios, the presence of noise, occlusions,
variations in illumination, and varying poses make the problem
even harder, leading to a significant decline in the performance
of SR and face recognition algorithms [3], [4].

Soft biometrics, such as gender, hair color, and skin tone,
can enhance image reconstruction, reducing the ambiguity
in face SR and increasing the reliability of recognition sys-
tems [5]. However, facial attributes are often not visible in low-
resolution (LR) images, making reliable access challenging.
Also, obtaining these attributes typically requires a classifier
or manual extraction, which is not very efficient [6].

In [5] and [6], attributes such as beard and glasses, among
others, are used to improve the quality of SR algorithms.
Nevertheless, these attributes alone are insufficient to generate
accurate high-resolution images. It is also necessary to con-
sider subtle characteristics, such as facial proportions, shapes,
and other high-level, more abstract features. Therefore, it is
essential to develop algorithms that rely on more general char-
acteristics as sources of information for image reconstruction.

Diffusion models are used for data generation across diverse
domains, and here, they are employed to generate SR images.
These models operate by adding noise at different scales to the

data and training a network to predict the noise present. Once
trained, the network can perform reverse diffusion, removing
the noise and generating the desired type of data.

Diffusion models can integrate various types of information,
such as text and image [7], image and audio [8], and multi-
modal data [9]. This enables the generation of extraordinarily
high-quality and original data. This concept is central to our
work, where we combine LR images with facial features.

Another tool commonly used in conjunction with diffusion
models is the classifier guidance method, which is used
to generate data within predefined classes or with specific
characteristics. It involves utilizing a classifier’s gradient as a
supervisor during reverse diffusion. For instance, it was used
in [6] to recover facial attributes. A drawback of this strategy
is the need to train a classifier, along with the additional
computational cost associated with gradient calculations.

The main contribution of our work lies in developing Fea-
ture Aggregation Super-Resolution (FASR), an SR algorithm
that recovers crucial features for face recognition. In addition
to the LR image, it takes as input a vector of facial features
derived from a set of LR images, which can be either a
series of video frames or independent images of an individ-
ual. This new vector has a higher signal-to-noise ratio than
each vector individually. It is incorporated into the network,
merging its information with LR image to generate an SR
version. In this way, our algorithm effectively recovers facial
information from an image, yielding results of higher quality
with minimal distortion of identity. FASR employs diffusion
models based on a Stochastic Differential Equation (SDE) and
operates without the need for a classifier to guide the reverse
diffusion process.

Our method’s effectiveness has been validated on the
CelebA and QuisCampi datasets. Our SR algorithm produces
superior qualitative and quantitative results. The state-of-the-
art values are supported by better results in face recognition
metrics such as Area Under the Curve (AUC) in the 1:1 verifi-
cation protocol and accuracy in the 1:N identification protocol.

This paper is structured as follows. Section II outlines
related works, Section III describes the main concept behind
the proposed method, and Section IV details our experiments
and results. Finally, Section V concludes the paper.

https://github.com/marcelowds/fasr


Fig. 1. Overview of the proposed method. The low-resolution images LR1, . . . ,LRN are used to compute a set of features F1, . . . ,FN , respectively, which
are then combined to generate FM . The low-resolution image LR0 is integrated with FM in the diffusion model to produce a super-resolution (SR) image.
The SR image is subsequently compared with a set of images from the gallery for face recognition.

II. RELATED WORK

In the seminal work [10], Sohl-Dickstein et al. utilized
principles from non-equilibrium thermodynamics to create a
generative model. Two other works in the line of diffusion
models that had much impact in this field are Denoising Dif-
fusion Probabilistic Models (DDPMs) [11] and Score-Based
Generative Models (SGMs) [12], [13]. In [14], DDPM and
SGD are generalized for continuous time steps and noise levels
using Stochastic Differential Equations (SDEs), expanding the
range of possibilities of research in diffusion models.

Due to the rapid evolution of diffusion models, various
opportunities for their application have emerged. Recent works
include the generation of audio, graphs, and shapes, as well
as image synthesis, solutions of general inverse problems, and
applications in medical images [11], [12], [14]–[17]. The full
potential of diffusion models can also be leveraged through
multi-domain data integration, such as text-to-image transla-
tion [7] and image editing [18]. Additionally, [8] combines
audio-visual information for speech enhancement.

SR is another significant application of diffusion models,
which is utilized in this work. In [19], an adaptation of
the DDPM model produces high-quality SR images. Sim-
ilarly, SRDiff [20] employs diffusion models to estimate
the difference between the original LR image and an high-
resolution (HR) image, resulting in an SR image. In [21],
SDEs were used to generate SR images. Additionally, [6]
performs SR by incorporating attribute information such as
beard, gender, and the presence of eyeglasses to generate high-
quality images. However, this approach has the drawback that
these attributes must be explicitly provided to the algorithm,
which cannot be easily estimated in LR images.

In [22], an identity-preserving SR method was developed.
In both [6] and [22], a gradient must be calculated during the

image reconstruction phase, which can increase computational
cost. In this study, we develop an algorithm that restores image
attributes by supplying a compact descriptor of facial features
for the algorithm.

Despite the excellent results achieved by diffusion models,
a major drawback is their high execution time due to their
iterative nature. However, this issue is likely to be mitigated in
the mid-term, as several studies are focused on enhancing the
computational efficiency of these methods. For a more detailed
discussion on accelerating and improving the efficiency of
sampling in diffusion models, refer to [23]–[25].

III. PROPOSED METHOD

In this section, we present the general idea of our proposed
method, followed by a brief theoretical background on dif-
fusion models based on SDEs and a description of how the
facial features are incorporated into the model.

A. General Idea
As previously noted, images captured in surveillance en-

vironments are often low-quality. Nevertheless, in certain
instances, a video of a particular person can provide multiple
LR images that can be combined to enhance the performance
of SR algorithms. This combination of information from
multiple images is expected to increase the signal-to-noise
ratio, providing higher-quality information.

In this study, we aim to improve the performance of an
SR algorithm by integrating a reference LR image with a
combination of multiple features extracted from different LR
images (see Fig. 1). This integration leads to enhanced image
reliability concerning person identification. Moreover, the al-
gorithm successfully retrieves high-level features that might
not be clearly visible but significantly enhance recognition
accuracy and image quality.



B. Theoretical Background

In the context of image generation, diffusion models have
two phases: forward diffusion and reverse diffusion. During
forward diffusion, Gaussian noise is added to the image, and
a network is trained to predict this noise. In reverse diffusion,
an image composed purely of noise is iteratively denoised and
transformed into an image that follows a distribution similar
to the images in the training set. If the diffusion procedure is
continuous, it can be modeled using an SDE.

According to [14], [26], a forward diffusion process
{x(t)}Tt=0 and its reverse are, respectively, modeled using the
following SDEs:

dx = f(x, t)dt+ g(t)dw, (1)

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄, (2)

where f(x, t) is the drift coefficient, g(t) is a diffusion
coefficient, w and w̄ are Wiener process (the former runs
backward in time) and pt is the probability density of x(t).
References [27], [28] supply more details about Itô SDEs and
the Wiener process.

Here, we consider xt as an image to be denoised. At t = 0,
the noise level in the image is zero, and at t = T , the noise
is at its maximum, and there is no information on the image.
To obtain an SR image, we need to solve Equation 2, and
for that, we use a deep neural network sθ to approximate
∇x log pt(x). The neural network is conditioned on LR images
and image features, denoted by y and FM , respectively. The
training of the neural network sθ(x(t),y,FM , t) is achieved
by optimizing the following loss function [29]:

min
θ

Et∼U [0,T ]Ex0∼p(x0)Ex(t)∼pt(x(t)|x(0)
[
λ(t)

×∥sθ(x(t),y,FM , t)−∇x(t) log p(x(t)|x(0))∥22
]
, (3)

where λ(t) is a positive weighting function and p(x(t)|x(0))
is the transition kernel from x(0) to x(t).

Here, we use the variation exploding (VE) case described
in [14] with f(x, t) and g(t) given respectively by:

f(x, t) = 0, g(t) =

√
dσ2(t)

dt
, (4)

where σ(t) = σmin (σmax/σmin)
t denotes the noise level of

the image at the time t.
For f(x, t) and g(t) described above, the mean and variance

of p(x(t)|x(0)) are given by [14]:

µµµ(t) = x(0), ΣΣΣ(t) = [σ2(t)− σ2(0)]I. (5)

Thus, we can analytically compute ∇x log p(x(t)|x(0)) in
Equation 3, allowing for efficient model training. Once the
network well estimates the gradient, we change ∇x log pt(x)
by sθ(x(t), t) in the reverse process (Equation 2) and solve it
from t = T to t = 0 using the Euler-Maruyama method [27],
[28] to generate an SR image x(0).

C. Model Conditioning
As in most diffusion models, we employ the U-Net ar-

chitecture [11]. To condition the model on LR images, we
follow a method similar to the one outlined in [19], [21]. This
method involves concatenating in the channel domain, the LR
image y and xT , which is the image undergoing denoising.
This concatenation results in a 6-channel image.

The network is conditioned on image features using a
method similar to time and class conditioning described
in [30]. For a given level of the layers, the weighted sum
of the time embedding and the feature vector is added to the
image, providing a conditioned image, as shown in Fig. 2.

Features Encoding

Fig. 2. Time and features encoding. Adapted from [31].

We used a compact descriptor (see Section IV-A for more
details) extracted from the HR images during training to
condition the neural network. The LR images are upsampled
to the original size of HR images to preserve the dimensions.
During the evaluation phase, one LR0 image is used as a
reference (in general, one should select the best and most
frontal image as the LR0 reference image, but here it was
chosen randomly), while other images LR1, . . . ,LRN are
used to compute feature vectors F1, . . . ,FN . The merging
of feature vectors can be performed in various ways. In this
work, the merged FM is the arithmetic mean of all feature
vectors F1, . . . ,FN . We are assuming that FM has a higher
signal-to-noise ratio than a feature vector obtained from an
individual LR image and that this mean vector approximately
represents the actual characteristics of the HR image.

Fig. 3. First row: original HR images extracted from the CelebA dataset.
Second row: synthetic HR images generated using only the feature vector
extracted from the corresponding image above.

To demonstrate the efficacy of utilizing the feature vector
to generate an SR image, we trained Equation 3 with y = 0
and exclusively employed the feature vector to produce some
images, as depicted in Fig. 3. These images showcase the
algorithm’s ability to reconstruct crucial high-level features
necessary for preserving a person’s identity. When coupled
with the LR image, the feature vector proves effective in
restoring image details while minimizing identity distortion.



IV. EXPERIMENTS AND RESULTS

This section describes the experimental setup, followed
by the results obtained on two distinct datasets. Lastly, we
examine some extreme cases where the algorithm may fail.

A. Experiments

In this study, we explored three datasets: FFHQ [32],
CelebA [33], and Quis-Campi [34], all gathered from surveil-
lance scenarios. The FFHQ dataset was employed for model
training, where 106 training steps were conducted. CelebA was
employed to test our approach, with 500 identities selected.
Each identity comprises multiple images, with one randomly
chosen as the gallery image. A second image is downsampled
to create a LR probe image. The remaining images were
also downsampled and used to extract features, assisting the
reconstruction process of the LR probe image.

A complementary test to further validate our algorithm
was conducted on a real-world scenario from the Quis-Campi
dataset, where the images pose additional challenges for SR
and face recognition algorithms. We selected 90 identities
and used five downsampled images as probe images for
each identity. These images were then used to calculate an
average feature vector, which was utilized to generate the SR
images. In addition, the dataset already contains gallery images
obtained in a controlled environment for each identity.

The parameters controlling the noise level over time were
set at σmin = 0.001 and σmax = 348. We worked with images
of 128 × 128 pixels. For producing LR images, we applied
8 × 8 downsampling followed by upsampling using bicubic
interpolation to achieve a final size of 128 × 128 pixels. We
used 2,000 steps to solve the SDE for image reconstruction.

The feature vector used for training the SR algorithm and
for facial recognition consists of a 512-dimensional vector
generated through AdaFace [35] with a ResNet backbone [36]
trained on the CASIA-WebFace dataset [37]. Image descrip-
tors were compared using the cosine similarity metric. For the
recognition task, we compare the SR-recovered images against
the gallery images. Our proposed algorithm is compared
against state-of-the-art algorithms: SR3 [19] and SDE-SR [21].

B. Results

Table I shows the quantitative results of our algorithm on the
CelebA dataset. Notably, FASR provides superior performance
in terms of AUC, Rank-1, Rank-5, and Rank-10 (with an
improvement of up to 4%) compared to other algorithms. As
our algorithm incorporates the feature vector during the image
generation phase, the images can be recovered while maintain-
ing features that positively impact recognition and verification.
Table II shows the quantitative results on the Quis-Campi
dataset. In this context, we made additional comparisons with
IDM [38] and SRGD [6], state-of-the-art algorithms. IDM
represents an enhancement of SR3, while SRDG takes feature
information as input and attempts to incorporate these features
in SR images. Our algorithm provides superior results in
recognition accuracy (Rank-1).

TABLE I
THE 1:1 VERIFICATION AND 1:N IDENTIFICATION (RANK-1, RANK-5 AND

RANK-10) RESULTS OBTAINED USING THE ADAFACE RECOGNITION
MODEL THROUGH SUPER-RESOLUTION ON THE CELEBA DATASET.

SR Method AUC Rank-1 (%) Rank-5 (%) Rank-10 (%)

LR 0.885 27.00 41.40 51.60
SR3 0.936 45.60 62.00 71.00

SDE-SR 0.933 48.60 66.60 72.40
FASR (Ours) 0.946 52.80 70.00 76.00

TABLE II
THE 1:1 VERIFICATION AND 1:N IDENTIFICATION (RANK-1, RANK-5 AND

RANK-10) RESULTS OBTAINED USING THE ADAFACE RECOGNITION
MODEL THROUGH SUPER-RESOLUTION ON THE QUIS-CAMPI DATASET.

SR Method AUC Rank-1(%) Rank-5(%) Rank-10(%)

LR 0.816 23.78 46.89 58.67
IDM 0.885 28.22 56.44 70.00
SR3 0.914 45.78 69.56 79.77

SDE-SR 0.917 50.00 72.67 81.56
SRDG 0.920 49.33 73.11 82.00

FASR (Ours) 0.917 51.33 72.44 80.00

Lastly, the qualitative outcomes for on the Quis-Campi
dataset are presented in Fig. 4. Our method, FASR, is com-
pared against other methods utilizing diffusion models to
restore facial details and features. While these methods are
effective to some extent, they often introduce artifacts or
noise onto the facial images, typical issues encountered in SR
algorithms. In contrast, FASR stands out as the only approach
that produces natural-looking images without noticeable arti-
ficiality. It maintains facial naturalness, preserves symmetries,
and successfully recovers details without introducing artifacts
or distorting facial features.

For instance, in row 3 of Fig. 4, images generated by
other algorithms exhibit distortions, particularly in the eye
region, leading to a loss of naturalness and symmetry in
the faces. Conversely, in row 4 of Fig. 4, our algorithm
produces images with significantly reduced noise compared
to the others. Moving to row 6 of Fig. 4, images generated
by the SDE-SR and SRDG algorithms appear to “age” the
subject, whereas our algorithm preserves the person’s age
while maintaining their identity without distortion.

Due to the ill-posed nature of the SR problem, many SR
algorithms suffer from bias issues and struggle to recover
a person’s identity accurately. Our algorithm tackles this by
fusing a reference LR image with a multi-feature vector,
effectively mitigating identity-related problems and yielding
superior quantitative and qualitative results. However, ad-
ditional tests and experiments are required to reduce bias
and identity distortions before deploying this algorithm in
real-world scenarios, especially in surveillance environments
characterized by noisy and more challenging data, where errors
in facial recognition can have adverse consequences.

C. Failure Cases

Fig. 5 shows some failure cases of our algorithm compared
to SRDG and SDE-SR. In the first row, FASR fails to recover
the eyeglasses correctly, whereas SRDG successfully recovers



LR SR3 [19] IDM [38] SDE-SR [21] SRDG [6] FASR (Ours) GT

Fig. 4. Comparison of low-resolution (LR), super-resolution (SR) results obtained by various methods, and ground gruth (GT) images from the Quis-Campi
dataset. FASR outperforms baseline methods, preserving facial symmetry and natural appearance.

this attribute. Nevertheless, it is important to note that SRDG
requires explicit information about whether the person is
wearing eyeglasses. This information is not always discernible
from LR images in surveillance scenarios.

In the second row of Fig. 5, we observe a failure case of
FASR compared to SDE-SR. The image in question shows
significant pose variation and highly heterogeneous illumina-
tion. FASR produces smoother images with less noise than the
other algorithms, causing the information about eyeglasses and
the sun’s reflection to spread across the periocular region.

Upon closer examination of the cases where our algorithm
fails in Rank-5, we observed that most images share charac-
teristics similar to those described in the previous paragraphs.
Thus, FASR provides better results for recognition accuracy
but may be more sensitive to variations in pose and lighting.

V. CONCLUSIONS

In this work, we introduced FASR, an algorithm that inte-
grates multi-features and a reference LR image into diffusion
models to generate SR images. A key advantage of our
algorithm is its independence from explicitly provided facial
attributes; instead, it utilizes features extracted using a deep
neural network. This methodology enables our algorithm to
preserve individuals’ identities more effectively than other
methods, resulting in high-quality SR images with enhanced
face symmetry, reduced noise and minimized distortions in
face attributes. Our approach was validated on the CelebA
and Quis-Campi datasets, where we achieved state-of-the-art
results for recognition metrics. Hence, it demonstrates the
potential to be applied in real-world surveillance scenarios.
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Fig. 5. Failure cases: the first row presents results from SRDG, FASR (ours),
and ground truth (GT) images, while the second row presents results from
SDE-SR, FASR (ours), and GT images.
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