
Face Super-Resolution Using Stochastic Differential Equations

Marcelo dos Santos∗, Rayson Laroca∗, Rafael O. Ribeiro†, João Neves‡, Hugo Proença‡, David Menotti∗
∗Department of Informatics, Federal University of Paraná, Curitiba, Brazil

†National Institute of Criminalistics, Brazilian Federal Police, Brasília, Brazil
‡Instituto de Telecomunicações, University of Beira Interior, Covilhã, Portugal

∗{msantos,rblsantos,menotti}@inf.ufpr.br †rafael.ror@pf.gov.br ‡{jcneves,hugomcp}@di.ubi.pt

Abstract—Diffusion models have proven effective for various
applications such as images, audio and graph generation. Other
important applications are image super-resolution and the solu-
tion of inverse problems. More recently, some works have used
stochastic differential equations (SDEs) to generalize diffusion
models to continuous time. In this work, we introduce SDEs
to generate super-resolution face images. To the best of our
knowledge, this is the first time SDEs have been used for such
an application. The proposed method provides an improved peak
signal-to-noise ratio (PSNR), structural similarity index mea-
sure (SSIM), and consistency than the existing super-resolution
methods based on diffusion models. In particular, we also assess
the potential application of this method for the face recognition
task. A generic facial feature extractor is used to compare the
super-resolution images with the ground truth, and superior
results were obtained compared with other methods. Our code
is publicly available at https://github.com/marcelowds/sr-sde.

I. INTRODUCTION

Probabilistic approaches have been successfully applied to
data generation. Two main discrete models are known as
Denoising Diffusion Probabilistic Models (DDPM) [1], [2] and
Score matching with Langevin dynamics (SMLD) [3].

Inspired by considerations from non-equilibrium thermody-
namics, in the DDPM, a Markov chain is used to model the
forward and reverse processes of a diffusion model. In the
forward process, random Gaussian noise is added to the clean
image until a pure noisy image is obtained. A network is
trained to predict the noise level of the image at each step.
To generate an image in the reverse process, a pure Gaussian
noise is considered as the initial state of a Markov chain. The
network is used to iteratively denoise the image until a clean
image is obtained.

Similar to DDPM, the SMLD model consists of perturbing
the data with different scales of random Gaussian noise. A
network conditioned at the noise level is trained to learn the
gradient of the log probability density with respect to data.
The Langevin dynamics [4] is used for the data generation
process to remove the noise from the data iteratively. Starting
from high noise levels, the process runs until low noise
levels are reached and the generated images have distributions
indistinguishable from the original data distribution. These two
classes of models are part of score-based generative models.

Score-based generative models have been successfully ap-
plied to a wide range of different data, such as the generation
of audio [5], graphs [6] and shapes [7] as well as for im-
age synthesis, achieving results even better than Generative

Adversarial Networks (GANs) [8], image edition [9], text-to-
image translation [10], general inverse problems [11], [12],
super-resolution [13], [14], among others. For the super-
resolution task, Saharia et al. [13] and Li et al. [14] adapted the
DDPM models to generate super-resolution images using low-
resolution images as a guide to a Markov chain. In [12], super-
resolution was treated as a special case of an inverse problem.

In [15], the authors presented a generalization of score-
based models to continuous time using a stochastic differential
equation (SDE). The DDPM and SMLD models are considered
particular cases of a general SDE. The generalization of the
DDPM and SMLD models are called variation preserving (VP)
and variation exploding (VE), respectively. In [15], it is also
presented a third model named subVP, which has the variance
preserved during the diffusion process but is limited by the
variance of the VP process. The developed methods reached
record-breaking results for unconditional image generation,
which is performed by solving a reverse SDE. More recently,
in [16]–[18], the SDE score-based models are further devel-
oped, focusing on decreasing the execution time, optimizing
the image generation process, and improving high-resolution
image synthesis.

In this work, the continuous version of diffusion models
described through an SDE in [15] is adapted to deal with the
face super-resolution problem. As far as we know, this is the
first time that SDEs are used to face super-resolution images.
We evaluate four different algorithms: SDE-VP, SDE-subVP,
SDE-VE and SDE-VEcs. The robustness of the obtained
models is demonstrated by the generation of detailed and high-
quality super-resolution images.

The peak signal-to-noise ratio (PSNR) and structural sim-
ilarity index measure (SSIM) values achieved are similar to
those obtained by other super-resolution methods based on
diffusion models. However, considering that these metrics
are not strongly correlated with how humans perceive image
quality [13], [19], we conducted an additional experiment
to demonstrate the superiority of the proposed method. The
high-resolution (HR) and super-resolution (SR) images are
provided to a VGG-Face network [20] for obtaining a compact
feature descriptor and measuring the average cosine similarity
between the corresponding HR and SR images. The obtained
results are more promising than existing methods. We also
show that if we only rely on the PSNR metric, this does not
always provide the best images for face recognition. Moreover,
our super-resolution method is based on denoising, so our
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method is particularly suitable for surveillance scenarios where
the image quality is low and noisy.

The remaining of this paper is organized as follows: Sec-
tion II contains the theoretical background behind the proposed
method, while Section III describes our experiments and
results. Finally, section IV concludes the paper.

II. THEORETICAL BACKGROUND

A. Stochastic differential equations and super-resolution

A continuous diffusion process {x(t)}Tt=0 can be modeled
by the Itô SDE

dx = f(x, t)dt+ g(t)dw, (1)

where f(x, t) is the drift coefficient, g(t) is a diffusion
coefficient, and w is a Wiener process. For more details about
Itô SDE and Wiener process, see [4], [21]. In [22], it was
shown that it is possible to reverse the diffusion process (Eq. 1)
using another diffusion process given by

dx = [f(x, t)− g(t)2∇x log pt(x)]dt+ g(t)dw̄, (2)

where dw̄ is a Wiener process running backwards in time.

Fig. 1. Forward and reverse processes. Adapted from [15].

In [15], the authors used a deep neural network sθ(x(t), t)
to learn ∇x log pt(x) during the forward process. Once this
gradient is learned, the reverse process (Eq. 2) is run, changing
∇x log pt(x) by sθ(x(t), t) to generate a sample x(0) ∼ p0
(see Fig. 1). As we are dealing with the super-resolution
problem, in this work, we also use a down-sampled version
y of the image x as input to the network, denoted by
sθ(x(t),y, t). To generate a super-resolution image, during
the reverse process we initially use a noisy image x(T ) to
iteratively transform it on x(0), using y as a guide to the
stochastic process.

To train the network, we must find the parameters θ of
sθ(x(t),y, t) such that ∇x log pt(x) can be well approximated
by the network. For this purpose, we must optimize the
following function [23]

min
θ

Et∼U [0,T ]Ex0∼p(x0)Ex(t)∼pt(x(t)|x(0)
[
λ(t)

×∥sθ(x(t),y, t)−∇x(t) log p(x(t)|x(0))∥22
]
, (3)

where λ(t) is a positive weighting function. In Eq. 3, we need
to compute p(x(t)|x(0)), but if f(x, t) from Eq. 1 is an affine
function, the distribution p(xt|x0) is a normal distribution
where the mean µµµ(t) and variance ΣΣΣ(t) evolve according to
the following differential equations [4]

dµµµ(t)

dt
= E[f(x, t)] (4)

and
dΣΣΣ(t)

dt
= E[f(x, t)(x−µµµ(t))⊤ + (x−µµµ(t))f⊤(x, t)]

+g2(t)I. (5)

In the VE, VP and subVP cases described in [15] we have
f(x, t) and g(t) given respectively by

f(x, t) = 0, g(t) =

√
dσ2(t)

dt
, (6)

f(x, t) = −1

2
β(t)x, g(t) =

√
β(t) (7)

and

f(x, t) = −1

2
β(t)x, g(t) =

√
β(t)

(
1− e−2

∫ t
0
β(s)ds

)
, (8)

where σ(t) and β(t) are functions which describe the level of
noise added to the data at each time.

For all the three models, the drift coefficients are affine
functions and the mean and variance are computed analytically
using Eq. 4 and Eq. 5. The results for the mean and variance
of the VE, VP and subVP models are obtained in [15] and are
given respectively by

µµµ(t) = x(0), ΣΣΣ(t) = [σ2(t)− σ2(0)]I, (9)

µµµ(t) = x(0)e−
1
2

∫ t
0
β(s)ds, ΣΣΣ(t) = [1− e−

1
2

∫ t
0
β(s)ds]I, (10)

and

µµµ(t) = x(0)e−
1
2

∫ t
0
β(s)ds, ΣΣΣ(t) = [1−e−

1
2

∫ t
0
β(s)ds]2I. (11)

With these three equations, it is possible to compute p(xt|x0)
and calculate the loss function (Eq. 3) during the training pro-
cess.

Following [15], we choose σ(t) = σmin (σmax/σmin)
t and

β(t) = β̄min + (β̄max − β̄min)t to describe the noise level.

B. Solving the SDE
After the training is performed and the function sθ is

obtained, we need to solve the reverse diffusion (Eq. 2) from
t = T to t = 0 in order to obtain the super-resolution images.
For this purpose, we use the Algorithm (1), which is composed
of two main functions, the Predictor and the Corrector.

The Predictor function gives an estimate of the sample at the
next time step. For the SDE-VE model it is used the Euler-
Maruyama [4], [21], while for the other models, it is used
the Reverse-diffusion discretization strategy [15], which is a
simple discretization of the reverse SDE, given by Eq. 2.

The Corrector function corrects the marginal distribution
of the estimated sample [15]. This is done by combining
numerical SDE solvers with score-based Markov chain Monte
Carlo (MCMC) approaches, such as Langevin Monte Carlo
Markov Chain [24] or Hamiltonian Monte Carlo method [25].
For more details about Predictor-Corrector steps, see [15].

In this work, the models SDE-VP and SDE-subVP use no
corrector method, i.e., the Corrector is equal to identity. The
SDE-VE method is evaluated in two versions: one with the
identity corrector step and another with the Langevin corrector
step, which we call SDE-VEcs.



Algorithm 1 Predictor-Corrector (PC) sampling
N: Number of discretization steps for the reverse-time SDE
M: Number of correction steps

1: Initialize xT ∼ pT (x)
2: for i = N − 1 to 0 do
3: xi ← Predictor(xi+1)
4: for j = 1 to M do
5: xi ← Corrector(xi)
6: end for
7: end for
8: return x0

C. Network architecture

The network architecture we use is mainly inspired by the
U-net architecture [2] with the improvements described in [15]
but adapted to receive the low-resolution (LR) image, similar
to the adaptation made by Saharia et al. [13]. The LR image
is upsampled to the target HR size and concatenated with a
noisy image. Therefore, the network receives as input the LR
image y and a noisy image xi, and with the network’s output,
it is possible to update xi to xi−1 using Algorithm (1) (see
Fig. 2). This process is repeated from t = T up to t = 0,
where the SR image x0 is obtained.

Fig. 2. Architecture of the network. The concatenation of the low-resolution
image y and the noisy image xi is used as input to the network. Adapted
from [13].

The source code and the network weights are publicly
available at https://github.com/marcelowds/sr-sde.

III. EXPERIMENTS AND RESULTS

Here, we describe the proposed experiments and results
obtained with our methods. In Section III-A we describe the
main metrics used to verify the quality of the SR images.
In Section III-B we describe how to use image features and
cosine similarity CS to compare SR and HR images. We also
analyze how the image smoothness can influence the PSNR
and CS metrics. In Section III-C we demonstrate the superior
quality of our method both qualitatively (with very detailed SR
images) and quantitatively with the highest value for the CS
metric, which is very important for recognition tasks. Finally,
in Section III-D we describe the experimental parameters used
in our experiments.

To evaluate the capacity of SDEs for the super-resolution
task, the four algorithms SDE-VP, SDE-subVP, SDE-VE and
SDE-VEcs are provided with 16 × 16 images and produce

128× 128 images. The working size of the network is 128×
128, so the input is upsampled to this size.

A. Super-resolution metrics and image smoothness

The metrics PSNR and SSIM are used to evaluate the quality
of the SR images. We also use the consistency, defined as the
Mean Squared Error (MSE) between the down-sampled SR
images and the LR inputs. Aiming to evaluate the potential
applications of our method on face recognition systems, we
rely on the cosine similarity between the image features
obtained from VGG-Face [20].

Specifically for the SDE-VEcs method, the Langevin cor-
rection depends on a parameter r which controls the signal-
to-noise ratio during the correction step. Higher values of r
typically result in smoother images, as can be seen in Fig. 3.
It is well known that the PSNR and SSIM metrics are not
adequate for measuring the quality of super-resolution images
because these metrics tend to be very conservative with high-
frequency details [13], [26]. Therefore, we use the SDE-VEcs
algorithm to generate a set of images with different values of
r and analyze the influence of the smoothness level on the
PSNR metric.

Original Sample1 Sample2 Sample3

Fig. 3. Samples obtained increasing r from left to right. For Sample1,
Sample2 and Sample3 the values of r are 0.10, 0.30 and 0.52 for the first
row and 0.12, 0.32 and 0.39 for the second row. Higher values of r yield
smoother images and larger values of PSNR (on average).

Fig. 4 shows PSNR as a function of the parameter r. As
can be seen, higher values of r cause the PSNR to increase,
with the highest value of PSNR occurring at r ≈ 0.5.
Thus, with smoother images, we can obtain higher values of
PSNR. This is in line with the regression model of [13], which
provides blurry and less detailed images than SR3, but with
better results for PSNR and SSIM.

B. Feature extraction for face recognition

One application of super-resolution algorithms is face recog-
nition. In real-world scenarios, the images of surveillance
cameras are usually noisy and low resolution [27]–[29]. Hence,
considering that our method is based on denoising, we believe
it can be very suitable for such scenarios.

To evaluate the potential influence of the smoothness and
PSNR metric on the recognition accuracy, we use different
images obtained with the SDE-VEcs algorithm for different
values of r, analyzing which of these images are better for
the face recognition task. To compare the SR and HR images,
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Fig. 4. CS and PSNR as a function of r (sampling parameter). Higher values
of r produce smoother images (with higher values of PSNR) but can decrease
the value of CS.

we extract the features of the images using VGG-Face and
measure the cosine similarity between them.

Let x and x̃ be the super-resolved and the original images,
respectively. The features extracted with VGG-Face is a one-
dimensional vector of size F and can be denoted by z =
f(x) for the super-resolution images and z̃ = f(x̃) for the
original images; f(·) is a feature extractor function. The cosine
similarity between these two vectors is computed using

s(z̃, z) =
⟨z̃, z⟩
∥z̃∥ · ∥z∥

, (12)

where ⟨·, ·⟩ denotes the scalar product, and ∥ · ∥ refers to the
Euclidean norm. As the above similarity is calculated for L
images, we denote each feature vector by an index i. The
average cosine similarity for the L images, denoted by CS, is

CS =
1

L

L∑
i=1

s(z̃i, zi). (13)

CS is the result of facial feature extraction, so it strongly
influences recognition accuracy. CS values close to 1 indicate
that the features of SR and HR images are very close and
that the super-resolution algorithm is retrieving image details
important for facial recognition.

As described in [19], [26], the PSNR metric does not align
well with human perception. Now one may ask what are the
best super-resolution images to use on the recognition tasks,
for example, the images with high-frequency details (smaller
values of r and PSNR) or smoother images (higher values
of r and PSNR). To answer this question, we analyze CS,
as a function of r in Fig. 4. We observe that CS has a
maximum value for r ≈ 0.16 (which is different from r
for which PSNR is maximum) and slightly decreases with r.
We can also analyze if there is relation between the values
of CS and PSNR, and for this purpose, we computed the
correlation coefficient between CS and PSNR, obtaining a
value of −0.6591. Therefore, not always higher values of
PSNR are related to higher values of CS (and consequently

higher recognition accuracy), as can be observed in the cross-
plot between CS and PSNR in Fig. 5.

23.4 23.6 23.8 24.0 24.2
PSNR

0.920

0.925

0.930

0.935

0.940

0.945

CS

Fig. 5. Cross-plot between CS and PSNR. The correlation coefficient between
CS and PSNR is −0.6591, implying that higher values of PSNR do not always
result in higher values of CS.

C. Super-resolution

We evaluate the proposed methods qualitatively (visually)
in Fig. 6, where it is demonstrated that the recovered images
with SDE-VE have, in most cases, more quality, more high-
frequency details, and are more natural when compared with
other methods. The SPARNet method [30] generates images
without distortion, but smoother when compared with our four
methods. For some images, our SDE-VEcs method is able
recover even the finest details, such as the beard in the image
shown in the fifth row of Fig. 6.

To evaluate our results quantitatively, we present in Table I
the metrics PSNR, SSIM, consistency and CS. The SPARNet
method [30] achieves the highest value of PSNR and SSIM
(these values may differ slightly from the original work due to
slight differences in the dataset used). However, as discussed
earlier, this is not enough to generate images with high-
frequency details as it occurs in SR3 [13] and in the variations
of the proposed approach. Considering that we intend to
apply our super-resolution method to surveillance scenarios
and facial recognition, we are interested in recovering details
that maximize the CS metric. As shown in Table I, SDE-
VE achieves the highest value for the CS metric, supporting
the idea that the SDE-VE method performs better than other
super-resolution methods for the face recognition task. When
comparing our four methods based on SDEs presented here,
the SDE-VE reached the best results.

D. Parameters and network training

Following [15], we set the parameters of the models as
σmin = 0.01, σmax = 348, β̄min = 0.1, and β̄min = 20.0. For
the optimization, we used the Adam optimizer with a warm-up
of 5000 steps and a learning rate of 2× 10−4.

For training, we explored the images from the Flickr-
Faces-HQ (FFHQ) dataset [32] with 106 steps. Low-quality



Original Input GFP-GAN [31] SPARNet [30] SR3 [13] SDE-VP SDE-subVP SDE-VE SDE-VEcs

Fig. 6. Super-resolution results. Our methods are shown in red (the best) and blue. SDE-VE provides more natural and detailed images than other methods.
It is worth highlighting that SDE-VEcs can even retrieve finer details in some cases, such as the beard in the image shown in the fifth row.

TABLE I
PSNR, SSIM, CONSISTENCY AND CS ON 16× 16 → 128× 128 FACE SUPER-RESOLUTION. THE BEST RESULT FOR CS IS HIGHLIGHTED WITH RED.

Model PSNR ↑ SSIM ↑ CONSISTENCY ↓ CS ↑

GFP-GAN [31] 21.5326± 1.5273 0.6006± 0.0709 37.2256± 12.4622 0.8689± 0.0581
SPARNet [30] 25.2903± 1.9770 0.7526± 0.0676 1.6826± 0.7652 0.9371± 0.0292
SR3 [13] 22.9581± 1.8370 0.6605± 0.0758 1.3715± 0.7904 0.9370± 0.0244
SDE-VP 22.7171± 1.8107 0.6448± 0.0787 0.1074± 0.0592 0.9330± 0.0262
SDE-subVP 22.6455± 1.8047 0.6428± 0.0797 0.1433± 0.1212 0.9300± 0.0261
SDE-VE 23.5101± 1.9492 0.6879± 0.0797 0.0454± 0.0357 0.9443± 0.0222

images were obtained by downsampling the original high-
resolution images by a factor of 8 and upsampling back to
the original size using bicubic interpolation. For testing, con-
sidering the high execution time, we used a random sampling
of L = 1024 images of the CelebA-HQ dataset [33]. We
perform our evaluation in a cross-dataset fashion because
it provides a better indication of generalization (hence real-
world performance) [34], [35]. Previous works also conducted
experiments in this way [13], [30]. The total number of time
steps was fixed in N = 2000, and for the SDE-VEcs, we used
M = 2 correction steps. For the VGG-Face feature extraction,
a feature vector size of F = 512 was used.

All experiments were carried out on a computer with an
AMD Ryzen 9 5950X CPU (3.4GHz), 128 GB of RAM (2633
MHz), and an NVIDIA Quadro RTX 8000 GPU (48 GB).

IV. CONCLUSIONS AND FUTURE WORK

In this work, we presented an application in continuous time
of diffusion models using SDEs. The diffusion models have
been outperforming GANs for various sets of tasks and can
train a model without instabilities (unlike GANs). When using
facial features as metrics combined with qualitative analysis,
we demonstrated that the SDE-VE model reaches better results
than other methods for the super-resolution task.

The SDE-VE super-resolution algorithm also has excellent
potential to be used for recognition tasks. As a next step,
we intend to demonstrate the effectiveness of our method
on images from surveillance camera datasets such as QUIS-
CAMPI [36] and SCface [37].

The influence of the image smoothness and PSNR values on
the recognition task will be further explored in future works.
More specifically, explainability techniques can be used to



analyze which characteristics change when we alter the image
smoothness and PSNR values, similar to the work performed
for periocular recognition in [38].

Despite the superior results of general diffusion models
and the method presented in this work, which is based on
SDEs, we remark that all these methods have a relatively
high execution time. Thus, it is important to research novel
strategies to improve the efficiency of these methods.

ACKNOWLEDGMENTS
This work was partly supported by the Coordination for

the Improvement of Higher Education Personnel (CAPES)
(Programa de Cooperação Acadêmica em Segurança Pública
e Ciências Forenses # 88881.516265/2020-01), and partly by
the National Council for Scientific and Technological Develop-
ment (CNPq) (# 308879/2020-1). We gratefully acknowledge
the support of NVIDIA Corporation with the donation of the
Quadro RTX 8000 GPU used for this research.

REFERENCES

[1] J. Sohl-Dickstein, E. Weiss, N. Maheswaranathan, and S. Ganguli,
“Deep unsupervised learning using nonequilibrium thermodynamics,” in
International Conference on Machine Learning, pp. 2256–2265, 2015.

[2] J. Ho, A. Jain, and P. Abbeel, “Denoising diffusion probabilistic models,”
in International Conference on Neural Information Processing Systems
(NeurIPS), vol. 33, pp. 6840–6851, 2020.

[3] Y. Song and S. Ermon, “Generative modeling by estimating gradients of
the data distribution,” in International Conference on Neural Information
Processing Systems (NeurIPS), pp. 1–13, 2019.

[4] S. Särkkä and A. Solin, Applied stochastic differential equations, vol. 10.
Cambridge University Press, 2019.

[5] N. Chen, Y. Zhang, H. Zen, R. J. Weiss, M. Norouzi, and W. Chan,
“Wavegrad: Estimating gradients for waveform generation,” arXiv
preprint arXiv:2009.00713, 2020.

[6] C. Niu et al., “Permutation invariant graph generation via score-based
generative modeling,” in International Conference on Artificial Intelli-
gence and Statistics (AISTATS), vol. 108, pp. 4474–4484, Aug 2020.

[7] R. Cai, G. Yang, H. Averbuch-Elor, Z. Hao, S. Belongie, N. Snavely,
and B. Hariharan, “Learning gradient fields for shape generation,” in
European Conference on Computer Vision (ECCV), pp. 364–381, 2020.

[8] P. Dhariwal and A. Nichol, “Diffusion models beat GANs on image syn-
thesis,” in International Conference on Neural Information Processing
Systems (NeurIPS), vol. 34, pp. 8780–8794, 2021.

[9] C. Meng, Y. He, Y. Song, J. Song, J. Wu, J.-Y. Zhu, and S. Ermon,
“SDEdit: Guided image synthesis and editing with stochastic differential
equations,” in International Conf. on Learning Representations, 2022.

[10] C. Saharia et al., “Photorealistic text-to-image diffusion models with
deep language understanding,” arXiv preprint arXiv:2205.11487, 2022.

[11] Y. Song, L. Shen, L. Xing, and S. Ermon, “Solving inverse problems in
medical imaging with score-based generative models,” in International
Conference on Learning Representations (ICLR), pp. 1–18, 2022.

[12] B. Kawar, G. Vaksman, and M. Elad, “SNIPS: Solving noisy inverse
problems stochastically,” in International Conference on Neural Infor-
mation Processing Systems (NeurIPS), pp. 21 757–21 769, 2021.

[13] C. Saharia, J. Ho, W. Chan, T. Salimans, D. J. Fleet, and M. Norouzi,
“Image super-resolution via iterative refinement,” arXiv preprint, vol.
arXiv:2104.07636, pp. 1–28, 2021, Google Research.

[14] H. Li, Y. Yang, M. Chang, S. Chen, H. Feng, Z. Xu, Q. Li, and Y. Chen,
“SRDiff: Single image super-resolution with diffusion probabilistic
models,” Neurocomputing, vol. 479, pp. 47–59, 2022.

[15] Y. Song et al., “Score-based generative modeling through stochastic
differential equations,” in International Conference on Learning Rep-
resentations (ICLR), pp. 1–36, May 2021.

[16] A. Jolicoeur-Martineau, K. Li, R. Piché-Taillefer, T. Kachman, and
I. Mitliagkas, “Gotta go fast when generating data with score-based
models,” arXiv preprint arXiv:2105.14080, 2021.

[17] A. Vahdat, K. Kreis, and J. Kautz, “Score-based generative modeling
in latent space,” in International Conference on Neural Information
Processing Systems (NeurIPS), vol. 34, pp. 11 287–11 302, 2021.

[18] T. Dockhorn, A. Vahdat, and K. Kreis, “Score-based generative modeling
with critically-damped langevin diffusion,” in International Conference
on Learning Representations (ICLR), pp. 1–54, 2022.

[19] R. Zhang et al., “The unreasonable effectiveness of deep features as a
perceptual metric,” in IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pp. 586–595, 2018.

[20] Oxford VGGFace Implementation using Keras Functional Framework
v2+. [Online]. Available: https://github.com/rcmalli/keras-vggface

[21] P. Kloeden and E. Platen, The Numerical Solution of Stochastic Differ-
ential Equations, vol. 23. Springer, Jan 2011.

[22] B. D. Anderson, “Reverse-time diffusion equation models,” Stochastic
Processes and their Applications, vol. 12, no. 3, pp. 313–326, 1982.

[23] P. Vincent, “A connection between score matching and denoising au-
toencoders,” Neural computation, vol. 23, no. 7, pp. 1661–1674, 2011.

[24] G. Parisi, “Correlation functions and computer simulations,” Nuclear
Physics B, vol. 180, no. 3, pp. 378–384, 1981.

[25] R. M. Neal et al., “Mcmc using hamiltonian dynamics,” Handbook of
markov chain monte carlo, vol. 2, no. 11, p. 2, 2011.

[26] J. Johnson, A. Alahi, and L. Fei-Fei, “Perceptual losses for real-
time style transfer and super-resolution,” in European Conference on
Computer Vision (ECCV), pp. 694–711, 2016.

[27] R. Abiantun, F. Juefei-Xu, U. Prabhu, and M. Savvides, “SSR2: Sparse
signal recovery for single-image super-resolution on faces with extreme
low resolutions,” Pattern Recognition, vol. 90, pp. 308–324, 2019.

[28] P. Li, L. Prieto, D. Mery, and P. J. Flynn, “On low-resolution face recog-
nition in the wild: Comparisons and new techniques,” IEEE Transactions
on Information Forensics and Security, vol. 14, pp. 2000–2012, 2019.

[29] G. R. Gonçalves et al., “Multi-task learning for low-resolution license
plate recognition,” in Iberoamerican Congress on Pattern Recognition
(CIARP), pp. 251–261, Oct 2019.

[30] C. Chen, D. Gong, H. Wang, Z. Li, and K.-Y. K. Wong, “Learning
spatial attention for face super-resolution,” IEEE Transactions on Image
Processing, vol. 30, pp. 1219–1231, 2020.

[31] X. Wang, Y. Li, H. Zhang, and Y. Shan, “Towards real-world blind face
restoration with generative facial prior,” in IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pp. 9164–9174, 2021.

[32] T. Karras, S. Laine, and T. Aila, “A style-based generator architecture for
generative adversarial networks,” in IEEE/CVF Conference on Computer
Vision and Pattern Recognition (CVPR), pp. 4396–4405, 2019.

[33] T. Karras, T. Aila, S. Laine, and J. Lehtinen, “Progressive growing of
GANs for improved quality, stability, and variation,” in International
Conference on Learning Representations (ICLR), pp. 1–26, 2018.

[34] A. Torralba and A. A. Efros, “Unbiased look at dataset bias,” in
IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), pp. 1521–1528, June 2011.

[35] R. Laroca, M. Santos, V. Estevam, E. Luz, and D. Menotti, “A first
look at dataset bias in license plate recognition,” arXiv preprint, vol.
arXiv:2208.10657, pp. 1–6, 2022.

[36] J. Neves, J. Moreno, and H. Proença, “QUIS-CAMPI: an annotated
multi-biometrics data feed from surveillance scenarios,” IET Biometrics,
vol. 7, no. 4, pp. 371–379, 2018.

[37] M. Grgic, K. Delac, and S. Grgic, “SCface – surveillance cameras face
database,” Multimedia tools and applications, vol. 51, no. 3, pp. 863–
879, 2011.

[38] J. Brito and H. Proença, “A short survey on machine learning explain-
ability: An application to periocular recognition,” Electronics, vol. 10,
no. 15, p. 1861, 2021.

https://github.com/rcmalli/keras-vggface

	Introduction
	Theoretical background
	Stochastic differential equations and super-resolution
	Solving the SDE
	Network architecture

	Experiments and Results
	Super-resolution metrics and image smoothness
	Feature extraction for face recognition
	Super-resolution
	Parameters and network training

	Conclusions and future work
	References

