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Abstract—Despite significant advancements in License Plate
Recognition (LPR) through deep learning, most improvements
rely on high-resolution images with clear characters. This sce-
nario does not reflect real-world conditions where traffic surveil-
lance often captures low-resolution and blurry images. Under
these conditions, characters tend to blend with the background
or neighboring characters, making accurate LPR challenging.
To address this issue, we introduce a novel loss function, Layout
and Character Oriented Focal Loss (LCOFL), which considers
factors such as resolution, texture, and structural details, as
well as the performance of the LPR task itself. We enhance
character feature learning using deformable convolutions and
shared weights in an attention module and employ a GAN-based
training approach with an Optical Character Recognition (OCR)
model as the discriminator to guide the super-resolution process.
Our experimental results show significant improvements in char-
acter reconstruction quality, outperforming two state-of-the-art
methods in both quantitative and qualitative measures. Our code
is publicly available at https://github.com/valfride/lpsr-lacd.

I. INTRODUCTION

Automatic License Plate Recognition (ALPR) systems have
become increasingly popular in recent years, driven by their
diverse practical applications, including toll collection, traffic
monitoring, and forensic investigations [1]–[3].

These systems generally encompass two main tasks: License
Plate Detection (LPD) and License Plate Recognition (LPR).
LPD is concerned with locating the areas in an image that
contain License Plates (LPs), whereas LPR is dedicated to
identifying the characters on these LPs. Recent studies have
been particularly concentrated on the LPR stage. Although
the reported recognition rates have typically been high, most
research has been conducted on high-resolution LPs, where the
characters are easily discernible and clearly defined [4]–[6].

Surveillance cameras typically record images with low
resolution or poor quality [7], mainly because of bandwidth
and storage constraints. This leads to a scenario where LP
characters blend with the background and adjacent characters,
seriously affecting the effectiveness of LPR systems [8]–[10].

Various image enhancement techniques, including super-
resolution and denoising methods, have been developed to
improve image quality by increasing resolution or overall
clarity. Despite significant strides in this field, most approaches
focus on enhancing objective image quality metrics such as
Peak Signal-to-Noise Ratio (PSNR) or Structural Similarity
Index Measure (SSIM) without considering the specific appli-
cation at hand [11], [12]. These techniques often struggle to

differentiate between similar characters in low-resolution (LR)
images, such as ‘B’ and ‘8’, ‘G’ and ‘6’, and ‘T’ and ‘7’.

In this work, we propose a perceptual loss function named
Layout and Character Oriented Focal Loss (LCOFL) to en-
hance LP super-resolution and, consequently, LPR perfor-
mance. LCOFL guides the network’s learning by considering
not only factors such as resolution, texture, and structural
details, but also the performance of the LPR task itself. It
specifically penalizes errors related to character confusion and
layout inconsistencies (i.e., LP sequences that deviate from
the patterns observed in the training set), thus mitigating
incorrect reconstructions. To further improve performance,
we incorporate a Generative Adversarial Network (GAN)-
style training, leveraging predictions from an Optical Char-
acter Recognition (OCR) model as the discriminator. Notably,
LCOFL can utilize predictions from any OCR model since it
relies solely on raw character predictions.

In summary, the main contributions of this work are:
• A novel loss function crafted to elevate the reconstruction

of LP characters by integrating character recognition
within the super-resolution process;

• Improvements to prevalent architectures in prior works by
incorporating deformable convolution layers and shared
weights into the attention module. A GAN-based training
approach is also proposed, employing an OCR model as
the discriminator. These strategies are aimed at generating
LP images that are not only of high quality and resolution
but also more accurately recognizable by OCR models;

• We have made our source code publicly available, aiming
to stimulate further research within this domain.

II. RELATED WORK

In this section, we review related works. First, we discuss
approaches used for LPR in Section II-A. Then, we cover
super-resolution methods for LPR in Section II-B.

A. License Plate Recognition

Silva & Jung [13] proposed to frame LPR as an object
detection task with individual characters treated as unique
classes for detection and recognition. They developed CR-
NET, a YOLO-based model tailored specifically for LPR,
which has subsequently proven highly effective and has been
adopted in several follow-up studies [1], [4], [14].

https://github.com/valfride/lpsr-lacd


Recent advancements have brought forth segmentation-free
approaches using LPs to classify text from an entire LP image
as a sequence. Ke et al. [15] developed a lightweight multi-
scale LPR network with depthwise separable convolutional
residual blocks and a multi-scale feature fusion layer for
quick inference. Liu et al. [16] introduced deformable spatial
attention modules to integrate global layout, enhancing char-
acter feature extraction. Rao et al. [6] tackled large-angle LP
deflections caused by cameras by integrating channel attention
mechanisms into CRNN, thereby improving LPR performance.

Multi-task models have also demonstrated considerable
success for LPR. In these models, convolutional layers first
process the entire LP image. Then, the network splits into N
separate branches with fully connected layers. Each branch is
dedicated to recognizing a single character (or blank), enabling
the simultaneous prediction of up to N characters [17]–[19].

While these methods have shown considerable success in
LPR, most of them were trained and evaluated using high-
resolution (HR) images. However, this scenario does not
mirror actual surveillance conditions, where LR images are
prevalent. LR images often have characters that blend into
the LP background due to quality issues and compression
techniques used for storage [2], [9], [20].

B. Super-Resolution for License Plate Recognition

Recent advancements in deep learning have significantly im-
proved general text super-resolution. However, there remains
a notable gap in research dedicated to specifically enhancing
LP recognition in low-resolution images.

Lin et al. [21] proposed using SRGAN [22] for LP super-
resolution. Their approach was subsequently refined by Hamdi
et al. [23], who introduced Double Generative Adversarial Net-
works (D_GAN_ESR_) for denoising, deblurring, and super-
resolving LPs. However, these approaches lacked integration
of character recognition within the learning process.

Focusing more on LP recognition, Pan et al. [24] proposed
a pipeline for LP super-resolution and recognition, exploring
ESRGAN [25] for single-character super-resolution. While
effective, this method struggles with heavily degraded LPs
where character boundaries are unclear. To enhance that ap-
proach, the same authors [10] later introduced a new degra-
dation model to simulate low-resolution LPs and proposed
LPSRGAN, an extension of ESRGAN that processes entire LP
images. LPSRGAN, trained with an OCR-based loss function,
better preserves character details and LP structural features but
generates incorrect text in complex degradation cases [10].

Kim et al. [26] developed AFA-Net, combining super-
resolution with pixel and feature-level deblurring to address
motion blur in LPs. Although their findings showed potential,
their test methodology was somewhat oversimplified, featuring
LR images that remain legible and focusing solely on super-
resolving digits while excluding letters and Korean characters.

Lee et al. [27] devised a GAN-based model incorporating
a character perceptual loss utilizing features from ASTER,
a well-known scene text recognition model. More recently,
Nascimento et al. [9] introduced subpixel-convolution layers

and an attention module to enhance textural and structural
details, also with a perceptual loss integrating an OCR model.
Despite their achievements, both methods encountered difficul-
ties related to character confusion caused by structural or font
similarities, resulting in reconstructions that deviated from the
expected patterns in the specific LP layout under investigation.

III. PROPOSED APPROACH

This section details the proposed methodology. In Sec-
tion III-A, we introduce our novel perceptual loss function,
focusing on enhancing character reconstruction while account-
ing for the LP layout. In Section III-B, we outline the model’s
architecture, expanding on the framework introduced in [9],
where it achieved significant success.

A. Layout and Character Oriented Focal Loss

In low-resolution LPs, characters often lose their shape
details, blending with the LP’s background and neighboring
characters. Moreover, the lack of precise character positioning
relative to the LP layout often causes the model to incorrectly
super-resolve a letter as a digit or vice versa [8], [9], [28].

To enhance network guidance for LP reconstruction,
we designed the Layout and Character Oriented Focal
Loss (LCOFL) based on four key insights: (i) treating recon-
struction partially as a classification task, where the super-
resolved characters within an LP image need to be correctly
identified by an OCR model; (ii) recognizing that characters
typically adhere to specific patterns based on the LP layout
(this includes fixed positions for digits and letters), which
should be maintained during reconstruction; (iii) ensuring
accurate reconstruction of characters with similar structures
(e.g., “2” and “Z” or “R” and “B”); and (iv) preserving
structural details from the original Ground Truth (GT) images
in the final super-resolved images.

1) Classification Loss: To tackle the LP recognition prob-
lem, we adopt a weighted cross-entropy loss within the
LCOFL function, as defined in Eq. (1):

LC = − 1

K

K∑
k=1

wk log pt(y
GT
k |xk) , (1)

where pt(y
GT
k ) represents the predicted probabilities of the en-

coded GT label yGT
t for the k-th character, while x represents

the predicted probabilities for the super-resolved images. K is
the maximum decoding length for the OCR alphabet.

The weights w are initialized as [1, . . . ,K], where no penal-
ization is applied, and each position corresponds to an encoded
character in the OCR alphabet. These weights act as penalties
assigned to characters misclassified due to structural or font
similarities. Following the validation phase in each epoch, a
confusion matrix is generated to assess the recognition of
super-resolved images by the OCR model against the GT
labels. Based on the confusion matrix, pairs of characters
frequently confused with each other are identified, and an
α value is added to the respective position of the encoded
character in w, which is utilized during the training phase.



2) LP Layout Penalty: In various regions, including the one
explored in this study (Brazil), digits and letters adhere to
a fixed positional arrangement within the LPs. This means
that a digit should not be mistakenly reconstructed as a letter,
and vice versa. To enforce this constraint, a layout penalty, as
defined in Eq. (2), is incorporated into the overall loss function.

LP =

K∑
i=1

[
D(xk) ·A(yGT

k ) + ·A(xk) ·D(yGT
k )

]
(2)

In Eq. (2), D(·) indicates the assertion of a digit at a
specific position, while A(·) denotes the assertion of a letter.
The left side of the sum verifies the correct positioning of a
letter, while the right side checks the placement of a digit.
As per the criteria outlined in Eq. (3), there is no penalty
added if a character is correctly positioned. However, for each
misplacement, a penalty value β is added to the sum.

D(c) =

{
β if c is a digit
0 otherwise

A(c) =

{
β if c is a letter
0 otherwise

(3)

3) Dissimilarity Loss: Most objective methods for assess-
ing image quality compare a reference, distortion-free image
with a sample image. One commonly used metric is Mean
Squared Error (MSE), which measures the average squared
difference between each pixel of the reference and the sample
image. MSE is also used in PSNR to calculate the ratio
between the maximum possible value of a signal (the reference
image) and its corrupted counterpart. These metrics are pop-
ular due to their simplicity and clear physical meaning [29].

However, they do not align well with the human visual
system, which excels at identifying structural aspects of a
scene, such as contrast, textures, structures, and luminance
differences [30]. To better guide the network in super-resolving
images with a focus on structural information, we incorporate
SSIM [31] into our loss function, as shown in Eq. (4):

LS =
1− SSIM(Si, Hi)

2
, (4)

where Si represents the super-resolved image, and Hi stands
for the high-resolution GT image. SSIM evaluates three key
aspects: luminance, contrast, and structure. SSIM values range
from -1 to 1, with values near -1 indicating very different
images and values near 1 indicating highly similar images in
terms of structural similarity.

In Eq. (4), the transformation (1 − SSIM)/2 adjusts the
SSIM values to a range of [0, 1]. This adjustment ensures that
0 represents highly similar images, while 1 represents highly
dissimilar images. This adjustment facilitates its integration
into the loss function, enabling more effective penalization of
the network for generating images that deviate significantly
from the GT in terms of structure.

After considering the classification loss (LC), the LP layout
penalty (LP ), and the dissimilarity loss (LS), the final loss
function is formulated in Eq. (5). The main goal is to improve

the recognition rates attained by an OCR model when dealing
with LR images. Simultaneously, it aims to restore intricate
details to facilitate subsequent forensic analysis, which often
represents the ultimate goal of the super-resolution process.

loss = LD + LP + LS (5)

B. Architecture

We extend the network architecture introduced in [9], specif-
ically addressing the arrangement of Pixel Level Three-Fold
Attention Modules (PLTFAMs) within the Residual Concate-
nation Blocks (RCBs) [11].

Nascimento et al. [9] focused on the design of the PLTFAM.
Essentially, this design strategy capitalizes on PixelShuffle’s
capabilities to utilize inter-channel feature relationships within
the Channel Unit. It also integrates positional localization
through the Positional Unit and improves texture and re-
construction with the Geometrical Perception Unit. Despite
achieving remarkable recognition results, the attention module
is uniquely defined in each RCB, which hampers the attention
module’s learning potential across individual RCBs.

To overcome this limitation, we propose incorporating an
attention module with shared weights throughout the network
structure. This enables the attention module to gather informa-
tion from the initial layers, which extract fundamental LP char-
acteristics, to the final layers, where finer details are restored.
In this way, the attention module can consistently emphasize
learning features essential for accurate LP recognition.

Furthermore, we have replaced the depthwise convolutions
with deformable convolution layers in both the Positional
and Channel units. Traditional convolution layers apply fixed
geometric transformations, which may not adequately capture
intricate, non-uniform deformations present in LR or degraded
LP images. This limitation can restrict the network’s capability
to handle the diverse spatial arrangements of characters effec-
tively. In contrast, deformable convolution layers dynamically
adjust their receptive fields based on input features, allowing
for more adaptable and precise modeling of spatial dependen-
cies [3]. This adaptability significantly enhances the network’s
capacity to accurately reconstruct characters for recognition,
even under challenging conditions. Consequently, the model’s
overall LPR performance is improved [3], [32].

IV. EXPERIMENTS

This section covers our experiments, starting with the exper-
imental setup. We then analyze the results, emphasizing signif-
icant improvements in recognition accuracy and reconstruction
quality. Afterward, we conduct an ablation study to evaluate
each component’s contribution to the overall results. Finally,
we present initial experiments conducted on real-world data.

A. Setup

We conducted our experiments using the RodoSol-ALPR
dataset [33], which includes 10,000 images of cars obtained
at toll stations. This dataset includes 5,000 images featuring
cars with Brazilian LPs and another 5,000 depicting cars



with Mercosur LPs1. Brazilian LPs are composed of 3 letters
followed by 4 digits, while the initial pattern adopted for
Mercosur LPs in Brazil comprises 3 letters, 1 digit, 1 letter,
and 2 digits. We chose the RodoSol-ALPR dataset due to
its diversity and frequent use in recent research [3], [5],
[8]. In Fig. 1, we present LPs extracted from the dataset
(cropped and rectified), showcasing differences in lighting,
color combinations, and character fonts.

Fig. 1. Some LP images from the RodoSol-ALPR dataset [33]. The first two
rows show Brazilian LPs, while the last two show Mercosur LPs. This work
focuses on LPs with all characters arranged in a single row (10k images).

We explored the LR-HR pairs created and made available by
Nascimento et al. [9]. The LR versions of each HR image were
generated by simulating the effects of a low-resolution optical
system with heavy degradation due to environmental factors or
compression techniques. This was done by iteratively applying
random Gaussian noise and resizing with bicubic interpolation
until reaching the desired degradation level of SSIM < 0.1.

We also applied padding to the LR and HR images using
gray pixels to preserve their aspect ratio before resizing them
to 16×48 and 32×96 pixels, respectively, which corresponds
to an upscale factor of 2. Fig. 2 shows examples of LP images
obtained through this process.

Fig. 2. Examples of HR-LR image pairs used in our experiments.

In our GAN-based training methodology, we employed
the OCR model proposed by Liu et al. [3] (GP_LPR) as
the discriminator and the super-resolution model proposed
in [9] (Pixel-Level Network (PLNET)) as the generator. During
the testing phase, we employed the multi-task OCR model
proposed by Gonçalves et al. [17], which has demonstrated
significant success in previous studies [8], [9]. The decision
to use different OCR models during training and testing was
made to prevent biased reconstructions in the testing process.

The Adam optimizer was used with a learning rate of 10-4

for all models. To address oscillations during training, we im-
plemented the StepLR learning rate schedule as recommended
by Liu et al. [3]. This approach entails reducing the learning
rate by a factor of 0.9 every 5 epochs if no improvement in
recognition rate is observed. The GP_LPR model was set up

1Following prior literature [4], [8], [34], we use the term “Brazilian” to refer
to the LP layout used in Brazil prior to the adoption of the Mercosur layout.

with a decoding length of K = 7, corresponding to the 7-
character format found in LPs in the RodoSol-ALPR dataset.

The experiments were performed using PyTorch framework
on a computer with an AMD Ryzen 9 5950X CPU, 128 GB
of RAM, and an NVIDIA Quadro RTX 8000 GPU (48 GB).

B. Experimental Results

LPR models are typically evaluated using recognition rates,
defined as the number of correctly recognized LPs divided by
the total number of LPs in the test set [4], [15], [19]. Given
the prevalence of low-quality/low-resolution images in surveil-
lance systems, we also report partial matches where at least
six or at least five characters are correctly recognized. These
partial matches are valuable in forensic applications because
they can significantly narrow down the list of candidate LPs.

The results are presented in Table I. The first two rows show
the recognition rates achieved by the OCR model [17] on the
original HR images and their corresponding LR counterparts.
This performance serves as a baseline to demonstrate the
challenges faced by OCR models in low-resolution scenarios.
As can be seen, the OCR model performs poorly on low-
resolution LPs, achieving only a 1.1% recognition rate.

TABLE I
RECOGNITION RATES ACHIEVED ON DIFFERENT TEST IMAGES.

Test Images # Correct Characters
All ≥ 6 ≥ 5

HR (original images) 98.5% 99.9% 99.9%
LR (degraded images) 1.1% 5.3% 14.3%

LR + SR (PLNET [9]) 39.0% 59.9% 74.2%
LR + SR (SR3 [35]) 43.1% 67.5% 82.2%
LR + SR (Proposed) 49.8% 71.2% 83.3%

In the lower section of Table I, we present the OCR model’s
performance on LR images enhanced with super-resolution
techniques. Our super-resolution network considerably outper-
formed two state-of-the-art baselines [9], [35]. Specifically,
the OCR model showed notable performance improvements
when the LPs were super-resolved by our model. It attains a
recognition rate of 49.8%, in contrast to 43.1% using SR3 [35],
a renowned diffusion method by Google Research, and 39.0%
by PLNET [9]. Notably, our model took approximately 38
minutes to super-resolve all 4k test images (batch size = 1),
whereas SR3 required around 33 hours (52× slower), thus
underscoring our method’s superior accuracy coupled with sig-
nificantly reduced computational processing time. Naturally,
to ensure a fair comparison, all models (i.e., our proposed
approach and the baselines) were trained on the same samples.

In Fig. 3, we present a comparison of images enhanced
by our method with those using the baselines [9], [35].
Remarkably, the proposed approach outperforms the baseline
methods by accurately distinguishing between letters and
digits, maintaining the original texture and structural details,
and achieving superior visual quality in the reconstruction.

PLNET [9] performs quite well in reconstructing textures
and structures but faces challenges with character confusion.
For instance, it mistakenly reconstructed an “S” as a “5” in the
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Fig. 3. Representative images produced by the proposed approach and
baseline methods for the same inputs. GT = Ground Truth.

top row and a “G” as a “0” in the fourth row. In contrast, the
SR3 model [35] accurately reconstructs characters according
to the LP layout, reducing confusion between letters and
digits. Nevertheless, SR3 still presents inconsistencies, such
as partially reconstructing the letter “E” without its central
line in the fifth row and exhibiting variations in the curvature
of the two “F” in the bottom row.

The proposed approach showcases superior character re-
construction by consistently generating well-defined, super-
resolved characters that adhere closely to the LP layout. This
results in minimal discrepancies, particularly those arising
from poor lighting conditions. For instance, in the final row
of Fig. 3, while both baseline methods reconstructed a “J”
due to a light spot, our approach aimed for a “3,” aligning
more accurately with the digit’s structure. Furthermore, our
method excels in maintaining consistent shapes and contours
of characters across various LPs, leading to more reliable
reconstructions. This is evident when analyzing the curves of
the letter “E” and the two “F”s in the bottom two rows.

C. Ablation Study

This work introduces a novel loss function and incorporates
several modifications into the training procedure, including a
GAN-based style and changes to architectures proposed in
previous works, particularly in [9]. To assess the contribution
of each component, this section presents an ablation study.

We trained several networks under various conditions. These
conditions included implementations with and without the
proposed architectural modifications (ArchMod) detailed in
Section III-B, with and without the GAN-based training
style (GAN-style) described in Section IV-A, and utilizing
either our proposed loss function (LCOFL) or the loss function
from Nascimento et al. [9], which incorporates the logits from
the OCR model proposed by Goncalves et al. [17]. In the
experiments without the GAN-based style, predictions from
the OCR model [17] on the super-resolved images served as
input for the LCOFL loss (similar to [9]). These experiments
led to seven baselines, and the results are detailed in Table II.

The ablation results demonstrate that each component con-
tributes to the overall performance. Excluding the LCOFL
leads to a significant performance decrease (from 49.8% to
45.9%). Removing ArchMod and GAN-style training also
results in performance drops, albeit less severe, to 49.2% and

TABLE II
RECOGNITION RATES (RR) ACHIEVED WITH DIFFERENT COMPONENTS

INTEGRATED INTO THE PROPOSED APPROACH.

Approach RR

Proposed (w/o ArchMod, GAN-style, and LCOFL) 39.0%
Proposed (w/o LCOFL) 45.9%
Proposed (w/o ArchMod and LCOFL) 47.6%
Proposed (w/o GAN-style and LCOFL) 47.7%
Proposed (w/o ArchMod and GAN-style) 48.2%
Proposed (w/o ArchMod) 49.2%
Proposed (w/o GAN-style) 49.4%

Proposed 49.8%

49.4%, respectively. Notably, excluding all the proposed com-
ponents reduces the recognition rate drastically to just 39.0%.

Based on these results, we argue that LCOFL plays a crucial
role in aiding the network to accurately position the characters
according to the LP layout and mitigate potential confusion
caused by structural or font similarities among characters.
Additionally, incorporating shared weights in PLTFAM and
integrating deformable convolutions into its architecture have
significantly enhanced the attention module’s ability to extract
structural and textural features relevant to the characters.

D. Preliminary Experiments on Real-World Data

We also explored a dataset of 3, 723 LR-HR image pairs
collected from real-world settings. We allocated 80% of the
pairs for training, 10% for validation, and 10% for testing. Ta-
ble III shows the recognition rates achieved on the test images.
The results reinforce the superiority of our super-resolution
method, with the OCR model achieving a recognition rate of
39.5%, compared to 36.3% for PLNET [9] and 31.7% for
SR3 [35]. Fig. 4 visually demonstrates the effectiveness of
the proposed method. As one example, in the left image, both
baseline methods incorrectly reconstructed an “O” instead of
a “U,” with PLNET also introducing noticeable artifacts. In
contrast, our method super-resolved the characters accurately.

TABLE III
RECOGNITION RATES ACHIEVED ON REAL-WORLD IMAGES.

Test Images # Correct Characters
All ≥ 6 ≥ 5

HR (original images) 90.6% 98.7% 100%
LR (degraded images) 9.9% 28.0% 56.2%

LR + SR (SR3 [35]) 31.7% 63.7% 80.1%
LR + SR (PLNET [9]) 36.3% 67.2% 82.5%
LR + SR (Proposed) 39.5% 70.2% 83.1%

V. CONCLUSIONS

This article proposes a specialized super-resolution method
designed to improve the readability of characters and en-
hance recognition rates in LPR applications. Our approach
involves the implementation of the Layout and Character
Oriented Focal Loss (LCOFL) to guide the network in ac-
curately reconstructing characters according to the LP layout,
effectively mitigating confusion between structurally similar
characters. Additionally, we enhanced the PLTFAM model [9]



Fig. 4. Super-resolved LPs generated by our method and baselines from real-
world images. The background image shows the original scene from which the
LR image was extracted. From top to bottom: LP reconstructions by SR3 [35],
PLNET [9], our method, and a reference HR image from a different frame.

by introducing shared weights and integrating deformable
convolutions, leading to improved feature extraction.

Our experiments were conducted on the diverse RodoSol-
ALPR [33] dataset. The results revealed significantly improved
recognition rates in images reconstructed using the proposed
method compared to state-of-the-art approaches. Remarkably,
our method led to a recognition rate of 49.8% being achieved
by the OCR model, whereas the methods proposed in [35] and
[9] led to recognition rates of 43.1% and 39.0%, respectively.

The dataset and source code for all experiments are publicly
available at https://github.com/valfride/lpsr-lacd.

While our experiments were limited to Brazilian and Merco-
sur LPs, the findings provide a foundation for future research
to explore the method’s efficacy across different LP layouts.
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