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Abstract–Recent years have seen significant developments in
the field of License Plate Recognition (LPR) through the inte-
gration of deep learning techniques and the increasing availability
of training data. Nevertheless, reconstructing license plates (LPs)
from low-resolution (LR) surveillance footage remains challeng-
ing. To address this issue, we introduce a Single-Image Super-
Resolution (SISR) approach that integrates attention and trans-
former modules to enhance the detection of structural and textu-
ral features in LR images. Our approach incorporates sub-pixel
convolution layers (also known as PixelShuffle) and a loss function
that uses an Optical Character Recognition (OCR) model for
feature extraction. We trained the proposed architecture on
synthetic images created by applying heavy Gaussian noise to
high-resolution LP images from two public datasets, followed by
bicubic downsampling. As a result, the generated images have
a Structural Similarity Index Measure (SSIM) of less than 0.10.
Our results show that our approach for reconstructing these
low-resolution synthesized images outperforms existing ones in
both quantitative and qualitative measures. Our code is publicly
available at https://github.com/valfride/lpr-rsr-ext/.

I. INTRODUCTION

Super-resolution is a method for enhancing the quality
of an image or video by increasing its resolution. It has
become a widespread technology in fields like medical imag-
ing and surveillance [1], [2]. In recent times, there have
been remarkable advancements in super-resolution techniques,
particularly in interpolation-based, example-based, and deep
learning-based methods [3]–[5]. These improvements have
made it feasible to enhance low-resolution (LR) images and
videos in a manner that was once considered impossible.

Despite advances in recent years, super-resolution remains
a challenging issue due to its ill-posed nature, where there can
be numerous solutions in the high-resolution (HR) space [2],
[3]. Furthermore, the computational difficulty of the problem
grows as the upscale factor increases, and LR images may lack
sufficient information to reconstruct the desired details [2], [3].
Super-resolution can be classified into three main categories:
Single-Image Super-Resolution (SISR), Multi-Image Super-
Resolution (MISR), and video super-resolution [2], [6]. This
study focuses on the application of SISR in the context of
License Plate Recognition (LPR), as images from real-world
surveillance systems are often characterized by low resolution
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and poor quality [7]–[9]. Although such challenging conditions
are common in forensic applications, recent studies in LPR
have mainly concentrated on scenarios where the license
plates (LPs) are perfectly legible [10]–[13].

To address the super-resolution problem, many researchers
have proposed approaches based on Convolutional Neural Net-
works (CNNs) [2], [14], [15]. These approaches have achieved
exceptional results, but often rely on deep architectures that
can be computationally expensive and focus on increasing the
Peak Signal-to-Noise Ratio (PSNR) and Structural Similarity
Index Measure (SSIM) without considering the particular
application at hand. In the context of LPR, we assert that
such methods may not be effective in dealing with confusion
between closely resembling characters, such as ‘Q’ and ‘O’,
‘T’ and ‘7’, ‘Z’ and ‘2’, and other similar pairs.

We present a novel approach for improving LP super-
resolution through the use of PixelShuffle (PS) layers and a
Three-Fold Attention Module. Our method extends the work
of Mehri et al. [15] and Nascimento et al. [16] by taking into
account not only the pixel intensity values, but also structural
and textural information. To further enhance the performance,
we incorporate an auto-encoder that extracts shallow features
by squeezing and expanding the network constructed with PS
and PixelUnshuffle (PU) layers. Additionally, we leverage a
pre-trained Optical Character Recognition (OCR) model [17]
to extract features from the LP images during the training
phase, resulting in improved super-resolution performance and
recognition rates. It is notable that the choice of the OCR
model can be tailored to specific application requirements.

In summary, the main contributions of this work are:
• A super-resolution approach that builds upon MPR-

Net [15] and the architecture we proposed in [16] (see the
next paragraph) by incorporating subpixel-convolution
layers (PS and PU) in combination with a Pixel Level
Three-Fold Attention Module (PLTFAM);

• A novel perceptual loss that combines features extracted
by an OCR model [17] with L1 loss to reconstruct
characters with the most relevant characteristics. This loss
function allows the use of any OCR model for LPR;

• The datasets we built for this work, as well as the source
code, are publicly available to the research community.

A preliminary version of this study was presented at the
2022 Conference on Graphics, Patterns and Images (SIB-
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GRAPI) [16]. The approach described here differs from the
previous version in several aspects. For example, we introduce
novel approaches for LP super-resolution, such as an attention
module architecture that considers vertical and horizontal lines
to extract more structural and textural details of the LP font.
We propose a new loss method that employs feature extraction
through a pre-trained network for LP recognition. The images
used for training and testing consist of paired low- and high-
resolution LPs, with the LR samples degraded until their SSIM
falls below 0.10. These improvements have enabled us to
achieve better results than those reported in our previous work.
In this work, we report the results of experiments performed
on two datasets, collected in different regions under various
conditions, instead of a single one. In the RodoSol-ALPR
dataset [18], our approach recognizes at least five characters
in 74.2% of LPs compared to 42.2% by our previous model
trained and evaluated under the same conditions. In the PKU
dataset [19], the improvement was even more significant, from
82.5% by the preliminary approach to 97.3% by the improved
one (proposed in this work).

The rest of this article is structured as follows. Section II
provides a concise overview of relevant studies on SISR,
as well as works that designed or applied super-resolution
techniques specifically to LPR. In Section III, we elaborate on
our proposed network architecture and the implementation of
the new perceptual loss function that explores an OCR model
as a feature extractor. Section IV presents the experiments per-
formed and the results obtained. In Section V, we summarize
the findings and their significance, concluding this study.

II. RELATED WORK

This section provides a brief overview of related work.
Some approaches used in SISR are discussed in greater detail
in Section II-A, and the use of deep learning methods for LP
super-resolution is discussed in Section 2.2.

A. Single-Image Super-Resolution

The field of SISR has experienced significant advancements
in recent years, leading to its broad application in various
domains [1], [2]. Early SISR methods were generally classified
into four categories: prediction models, edge-based methods,
image statistical methods, and example-based methods [20]–
[24]. In 2016, Dong et al. [25] introduced the Super-Resolution
Convolutional Neural Network (SRCNN), a deep learning-
based approach to SISR, which demonstrated both superior
quality and faster performance compared to previous methods.

Despite the success of SRCNN, some limitations were
observed such as relying on pre-upsampled LR images, which
drastically increased computational complexity without pro-
viding significant additional information for image restora-
tion [26], [27]. To overcome these limitations, later studies by
Dong et al. [28] and Shi et al. [29] incorporated the upsampling
process near the end of the network architecture, leading to
a substantial reduction in execution time, parameters, and
computational cost.

Shi et al. [29] highlighted the importance of learnable up-
scaling and designed specialized sub-pixel convolution layers
to optimize the learning of upscaling filters. This enabled the
networks to learn complex mappings from LR to HR images,
resulting in improved performance compared to using fixed
filters from interpolation methods.

Recent research in the field of super-resolution has intro-
duced attention mechanisms as a means of improving image
reconstruction. Zhang et al. [30] were among the pioneers to
introduce the use of first-order statistical attention mechanisms
in this context. Afterwards, Dai et al. [31] presented an
improved version that uses second-order statistics to extract
more meaningful features. Huang et al. [32] proposed an
attention network that preserves detail fidelity by using a
divide-and-conquer strategy to progressively process smooth
and detailed features.

Mehri et al. [15] introduced the Multi-Path Residual Net-
work (MPRNet), which leverages information from both
inner-channel and spatial features using a Two-fold Atten-
tion Module (TFAM). MPRNet has demonstrated superior or
competitive performance compared to multiple state-of-the-art
methods such as those presented in [33]–[35].

Recently, Zhang et al. [36] proposed a structure-
and texture-preserving image super-resolution reconstruction
method, known as the Dual-Coordinate Direction Perception
Attention (DPCA) mechanism. This method effectively em-
phasizes structure and feature details, resulting in improved
image quality compared to previous methods.

B. Super-Resolution for License Plate Recognition

The goal of LPR is to precisely extract and identify char-
acters from each LP. Despite recent progress and successful
outcomes in LPR [10], [12], [13], most of the models proposed
have only been trained and evaluated on HR images, where the
LP characters are clear and easily recognizable to the human
eye. This does not reflect the typical conditions encountered
in real-world surveillance scenarios, where images frequently
have low resolution and poor quality [7]–[9].

The quality of LP images is closely linked to various factors,
such as camera distance, motion blur, lighting conditions,
and image compression techniques used for storage [7]. In
commercial LPR systems, sharp images are typically captured
using global shutter cameras. However, in surveillance sys-
tems, cost-effective cameras that use rolling shutter technol-
ogy are often employed, leading to blurry images [37] with
illegible LPs.

Super-resolution techniques have been proposed as a solu-
tion to address the issue of poor image quality in LPR. The
first works to combine the idea of super-resolution and LP
recognition date back to the 2000s, such as those proposed
by Suresh et al. [38] and Yuan et al. [39], which rely on
image processing or interpolation techniques to increase reso-
lution. While some algorithms incorporate character semantics
and segmentation for super-resolution, these methods tend
to perform poorly on noisy images [40]. Considering space



limitations, the remainder of this section describes works
published in recent years.

Lin et al. [41] proposed a super-resolution approach for
LPR using their Super-Resolution Generative Adversarial Net-
works (SRGAN) model and a perceptual OCR loss. Despite
obtaining promising results, the experiments were limited to
100 images and excluded those with low brightness/contrast.

Hamdi et al. [42] proposed a GAN-based architecture
named Double Generative Adversarial Networks for Image
Enhancement and Super Resolution (D_GAN_ESR), which
outperformed previous SRGAN methods [41]. The architec-
ture consists of two networks concatenated together, with the
first network responsible for denoising and deblurring and
the second network performing super-resolution. The authors
assessed the performance of their method in terms of PSNR
and SSIM, but acknowledged that these metrics alone do not
necessarily indicate superior image reconstruction. The model
was trained using LR images downsampled from HR images.

Lee et al. [43] observed that previous super-resolution
approaches did not take character recognition into account.
Thus, they designed a GAN-based model that incorporates a
perceptual loss composed of intermediate features extracted by
a scene text recognition model. Specifically, the authors used
an intermediate representation (block4) of ASTER [44]. While
their method produced better results than the same GAN-based
model trained with the original perceptual loss, the authors
did not make the dataset used available, and the degradation
method employed was not detailed.

Although the primary objective of enhancing LP images
is to improve recognition accuracy, it is surprising that most
works have primarily evaluated the quality of the reconstructed
images through subjective visual evaluations or metrics such
as PSNR and SSIM. It is well-known that these metrics have
a limited correlation with human assessment of visual qual-
ity [45], [46]. Furthermore, we observed that most previous
studies explored private datasets in the experiments [8], [42],
[43], [47], which makes it challenging to accurately assess the
reported results.

III. PROPOSED APPROACH

This section details our super-resolution approach that
enhances the extraction of structural and textural features
from low-resolution LPs. Our network extends the network
proposed in our previous work [16], further expanding the
MPRNet architecture and TFAM algorithm by Mehri et al. [15]
while taking inspiration from [36] to improve the proposed
attention module to enable the network to capture structural
and textural information. The proposed approach leverages a
novel perceptual loss function that uses an OCR model as a
feature extractor.

A. Network Architecture Modifications

The proposed approach for super-resolution in LPR features
a network architecture that builds upon the work of Mehri
et al. [15] and Zhang et al. [36]. As illustrated in Fig. 1,
the architecture comprises four key components: a Shallow

Feature Extractor (SFE); Residual Dense Blocks (RDBs) (refer
to [4] for more information); a Feature Module (FM) module;
and a Reconstruction Module (RM). The RM combines the
output of the FM module with two long-skip connections, one
from the end of the SFE module and the other from the input
image, to produce the final high-resolution output. Our specific
modifications are discussed in the following paragraphs.

The design of the SFE block includes a convolutional layer
with a 5× 5 kernel, followed by an autoencoder that employs
depthwise-separable convolutional layers (DConvs), PU and
PS operations instead of conventional convolutional layers and
pooling and upscale operations. The output of the layers is then
combined with a skip connection from the initial convolutional
layers. Finally, the resulting output is processed by the RDBs.

In Fig. 2, we show our modifications to the MPRNet’s
TFAM [15] and to the attention module by Nascimento et
al. [16] to create the PLTFAM. The design of this module
is based on the following insights: (i) images are composed
of the relationship between channels, where each channel
contributes unique characteristics to form the final image,
therefore, the extraction of these features is crucial for proper
image restoration; (ii) the positional information of these
essential features from the channels composing the images
is required; (iii) traditional downscale and upscale operations
rely on translational invariance and interpolation techniques,
which are not able to learn a custom process for different
tasks; (iv) the module captures salient structure from the
character fonts of the LP, highlighting both structure and
textural features in the image.

The Channel Unit (CA) module is designed to identify
and retain the inter-channel relationship features while elim-
inating less relevant ones. This is accomplished by using
two parallel convolutional layers, concatenating their outputs,
and processing the combined output through a convolutional
layer, a PU layer, a PS layer, and a DConv later. This
effectively summarizes the inter-channel relationship features
for enhanced image restoration.

The Positional Unit (POS) complements the CA module
by identifying the location of significant features within the
image. This is done by extracting first-order statistics through
average and max pooling operations, concatenating the results,
and processing them through DConvs and PS layers, restor-
ing the original feature map dimension. This highlights the
positions of the relevant inter-channel relationship features,
resulting in further improvement of image restoration.

We incorporated a third branch named Geometrical Per-
ception Unit (GP) to the network to enhance its ability to
extract critical characteristics such as structural, textural, and
geometric features from the LP. This approach was motivated
by the work of [36]. The GP utilizes global average pooling in
both the vertical and horizontal directions of the input image.
The output from this layer is then subjected to a point-wise
convolutional layer, followed by the sigmoid function to ensure
the right channel dimensions. The results from this layer are
then aggregated through an element-wise multiplication to
obtain the final output.
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Fig. 1. The proposed architecture, which incorporates an autoencoder consisting of PS and PU layers for feature compression and expansion, respectively.
The aim of this design is to eliminate less significant features. In addition, the TFAM modules in the original architecture were replaced with PLTFAM
modules throughout the network. The legend inside the figure provides explanations for the acronyms used.
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Fig. 2. Comparative illustration of the (a) Two-Fold Attention Module in MPRNet [15], (b) PixelShuffle Two-Fold Attention Module in Nascimento et al. [16],
and (c) PixelShuffle Three-Fold Attention Module (ours).

Finally, the outputs from the CA, POS and GP units are
combined through an element-wise sum and multiplication to
generate the final attention mask. This mask summarizes all
relevant information extracted by the CA, POS and GP units,
and is used to enhance the input to the PLTFAM module
through a DConv layer and a sigmoid function. This process
effectively emphasizes the key features of the image, including
the inter-channel relationships, positional information, and
structural information, resulting in improved image restoration.

The original Residual Concatenation Blocks (RCBs) were
enhanced by incorporating the proposed PLTFAM instead of
the TFAM and including dilated convolution layers in the
bottleneck path of the Adaptive Residual Blocks (ARB). This
modification retained the overall structure described in [15]
while improving the network’s capability to consider a broader
context through an increased receptive field without adding ex-
tra parameters. Also, the use of dilated convolutions helped to
reproduce fine details in LP images by avoiding the “smooth-
ing” effect that can occur with traditional convolutions.

Returning our attention to Fig. 1, the reconstruction module
was added as an output block for better aggregating fine
details. It consists of two PS with a scale factor value of 2
for pixel reorganization, each followed by a DConv layer and

by consecutive RDBs.

B. Perceptual Loss

To further enhance the accuracy of LPR, we propose in-
corporating a perceptual loss function in our super-resolution
approach. This loss function, shown in Eq. (1), is specifically
designed to improve the accuracy of the system by considering
the features that an OCR model typically expects.

PL =
1

n

( n∑
i=1

(Hi−Si)
2+

n∑
i=1

|fOCR(Hi)−fOCR(Si)|
)

(1)

In Eq. (1), Hi and Si denote the high-resolution and super-
resolved LP images, respectively, and fOCR(·) represents the
feature extraction process performed by the OCR model.

It is worth noting that the loss function allows the use of any
OCR model for LPR. This flexibility is particularly appealing
since novel models can be readily incorporated as they become
available. In this work, we explored the multi-task model
proposed by Gonçalves et al. [17], as it is quite efficient and
has achieved remarkable outcomes in prior research [7], [16].

The Mean Squared Error (MSE) is used to compute the
difference between the expected and generated pixel values,



with more significant errors being penalized more than minor
errors. This approach is beneficial in enhancing the overall
quality of the image. Also, the MSE effectively preserves
the structural information in the image, which is essential
in the super-resolution task. By contrast, the L1 loss ensures
robustness to noise and outliers and helps to preserve sharp
edges in the generated images by considering the expected
features. Combining MSE and L1 loss allows for a more
comprehensive evaluation of the generated images and helps
achieve a balance between preserving structural information
and minimizing errors.

IV. EXPERIMENTS

In this section, we detail the steps taken to validate the
effectiveness of our proposed method for LP super-resolution.
We first describe our experimental setup and then proceed to
provide a comprehensive analysis of the results obtained.

A. Setup

We made use of LP images obtained from the RodoSol-
ALPR [18] and PKU [19] datasets. To the best of our
knowledge, there is currently no public dataset that provides
paired LR and HR images from real-world settings. Hence, we
opted for these two datasets since they provide a wide range
of scenarios under which the images were acquired.

RodoSol-ALPR is the largest public dataset acquired in
Brazil. It comprises 20,000 images, with 10,000 showing
vehicles with Brazilian LPs and 10,000 featuring vehicles
with Mercosur LPs1. Observe in Fig. 3 the diversity of this
dataset regarding several factors such as LP colors, lighting
conditions, and character fonts. Here, we follow the standard
protocol (defined in [18]) that involves using 40% of the
images for training, 20% for validation, and 40% for testing.

Fig. 3. Some LP images from the RodoSol-ALPR dataset [18]. The first two
rows show Brazilian LPs, while the last two rows show Mercosur LPs. For
scope reasons, in this work, we conduct experiments on LPs that have all
characters arranged in a single row (i.e., 10K images).

The PKU dataset comprises images categorized into five
distinct groups, namely G1 through G5, each representing a
specific scenario. For instance, the images in G1 were captured
on highways during the day and depict a single vehicle. On
the other hand, the images in G5 were taken at crosswalk
intersections, either during the day or night, and have multiple
vehicles. All images were collected in mainland China. We

1Following [12], [16], [48], we use the term “Brazilian” to refer to the
layout used in Brazil prior to the adoption of the Mercosur layout.

perform experiments using the 2,253 images in groups G1–G3,
as they have labels regarding the LP text (these annotations
were provided in [49]). Despite the diverse settings, the LP
images have good quality and are perfectly legible (see some
examples in Fig. 4). Following [48], [49], we use 60% of
the images for training/validation, while the remaining 40%
are used for testing. Laroca et al. [50] recently revealed that
the PKU dataset (as well as several other datasets but not
RodoSol-ALPR) has multiple images of the same vehicle/LP.
They referred to such images as near-duplicates. Accordingly,
to prevent bias in our experiments, we ensured that all images
showing the same LP were grouped in the same subset.

Fig. 4. Examples of LP images from the PKU dataset [19]. Although the
LPs in this dataset have varying layouts, they all have seven characters.

The HR images used in our experiments were generated
as follows. For each image from the chosen datasets, we first
cropped the LP region using the annotations provided by the
authors. Afterward, we used the same annotations to rectify
each LP image so that it becomes more horizontal, tightly
bounded, and easier to recognize. The rectified image is the
HR image.

Inspired by [51], we generated LR versions of each HR
image by simulating the effects of an optical system with lower
resolution. This was achieved by iteratively applying random
Gaussian noise to each HR image until we reached the desired
degradation level for a given LR image (i.e., SSIM < 0.1). To
maintain the aspect ratio of the LR and HR images, we apply
padding before resizing them to 20 × 40 pixels, resulting in
an output shape of 80× 160 pixels for an upscale factor of 4.
Fig. 5 and Fig. 6 show examples of the LP images generated
for the RodoSol-ALPR and PKU datasets, respectively.

Fig. 5. Some HR-LR image pairs created from the RodoSol-ALPR dataset.

Fig. 6. Examples of HR-LR image pairs created from the PKU dataset.

Our experiments were conducted using the PyTorch and
Keras frameworks on a high-performance computer that is



equipped with an AMD Ryzen 9 5950X CPU, 128 GB of
RAM, and an NVIDIA Quadro RTX 8000 GPU (48 GB).

We used the Adam optimizer with a learning rate of 10-4,
which decreases by a factor of 0.3 (up to 10-7) when no
improvement in the loss function is observed. The training
process stops after 20 epochs without a decrease in the
loss function.

B. Experimental Results

In the LPR literature, models are usually evaluated in terms
of the number of correctly recognized LPs divided by the
number of LPs in the test set [12], [13], [50]. A correctly
recognized LP means that all characters on the LP were
correctly recognized. Considering our focus on low-resolution
LPs, which are very common in forensic applications, we
also report the recognition results considering partial matches
(when at least 5 or 6 of the 7 characters are correctly
recognized) as they may be useful in narrowing down the list
of candidate LPs by incorporating additional information such
as the vehicle’s make and model.

The results of the LPR experiment are shown in Table I. The
table demonstrates the recognition accuracy of HR and LR
LP images degraded by bicubic downsampling and recursive
Gaussian noise. The difficulty of the task can be seen from
the SSIM score, which ranges from 0 to 0.10, as illustrated in
Fig. 5, where the LP characters are barely distinguishable.

TABLE I
RECOGNITION RATES (%) ACHIEVED IN OUR EXPERIMENTS. “ALL”

REFERS TO LPS WHERE ALL CHARACTERS WERE RECOGNIZED
CORRECTLY; ≥ 6 AND ≥ 5 REFER TO LPS WHERE AT LEAST 6 OR 5

CHARACTERS WERE RECOGNIZED CORRECTLY, RESPECTIVELY.

RodoSol-ALPR PKU
All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

OCR [17] — no super-resolution

HR 96.6 98.6 99.0 99.4 99.9 99.9
LR 0.8 4.6 12.7 0.0 0.0 0.0

OCR [17] — with super-resolution

Proposed 39.0 59.9 74.2 72.0 90.3 97.3
Nascimento et al. [16] 10.5 25.4 42.2 35.5 65.3 82.5
Mehri et al. [15] 1.45 7.0 17.4 22.5 49.2 70.6

Average PSNR (dB) and SSIM

PSNR SSIM PSNR SSIM
Proposed 21.2 0.59 18.3 0.61
Nascimento et al. [16] 21.3 0.52 18.1 0.54
Mehri et al. [15] 16.8 0.38 16.4 0.41

The proposed super-resolution network achieved superior
performance compared to the two baseline models [15], [16],
as presented in the second section of Table I. The multi-
task OCR model [17] demonstrated remarkable improvement
when applied to images reconstructed by our super-resolution
approach in both datasets, particularly in the PKU dataset,
with a 14.8% higher recognition rate compared to the method
proposed in our preliminary method [16] and a 26.7% higher
accuracy compared to MPRNet [15] for LPs with more than
five correct characters.

For completeness, we detail in Table I the PSNR and SSIM
obtained by each approach. Similar to what was observed
in [41], [42], [46], the PSNR metric seems inappropriate
for this particular application, as our approach and the one
proposed in [16] reached comparable values, despite ours
leading to significantly better results achieved by the OCR
model. The SSIM metric, on the other hand, seems to better
represent the quality of reconstruction of LP images, as the
proposed method achieved considerably better SSIM values
in both datasets.

The OCR network showed these improved results because
of the effective extraction of textural and structural information
by the proposed GP unit, along with the CA and POS units.
These units were designed with pyramid and PixelShuffle
layers to optimize channel scaling and reorganization within
the image.

The variation in accuracy between the two datasets can
be attributed to the diversity present in the RodoSol-ALPR
dataset, which includes a range of layouts, lighting conditions,
and character fonts, while the PKU dataset largely comprises
LPs with a uniform layout, with less variation in the environ-
mental conditions under which the images were collected.

Finally, the results of the LPR experiments are further sub-
stantiated by a visual contrast of the super-resolution images
produced by our technique and the baseline methods [15],
[16]. Fig. 7 and Fig. 8 show four LR images alongside their
corresponding super-resolution counterparts, in addition to the
original HR image as a reference. It is evident that the pro-
posed approach outperforms both its preliminary version [16]
and MPRNet [15] in terms of perceptual quality.

LR (Input) Mehri et al. [15] Nascimento et al. [16] Proposed HR (GT)

Fig. 7. Typical examples of the images generated by the proposed approach
and baselines in the RodoSol-ALPR dataset [18]. GT = ground truth.

LR (Input) Mehri et al. [15] Nascimento et al. [16] Proposed HR (GT)

Fig. 8. Representative samples of the images generated by the proposed
approach and baselines in the PKU dataset [19]. GT = ground truth.

In general, the images produced by MPRNet [15] exhibit a
common issue of blurriness, where the character edges blend
into the LP background, resulting in visible artifacts. This
blurriness can also cause the edges of multiple characters



to blend together, leading to further visual distortions. The
architecture proposed in our previous work [16] manages
to reconstruct the characters but distorts them with strong
undulations, making them appear as part of the LP background
in some cases (see the first row of Fig. 7). Conversely, the pro-
posed model generates clear character edges and consistently
reconstructs the original font, without any missing characters
or incomplete lines.

When our model is uncertain about which character to
reconstruct, it tends to hallucinate with characters that are most
congruent with the LR input, as evident in the last row of Fig. 7
and Fig. 8, where the character “3” is reconstructed as “J”, and
the character “Z” is reconstructed as “2”, respectively. This
issue can be mitigated by incorporating a lexicon or vocabulary
into the network’s learning process to track the character type
(letter, digit, or either) that can occupy each position on LPs
of a specific layout.

Furthermore, the network tends to generate nearly identical
background colors for different images. This behavior can be
observed in the third row of Fig. 7 and the first row of Fig. 8.
However, it is noteworthy that, based on our analysis, this does
not considerably impact the recognition results achieved.

1) Ablation Study: As our approach integrates multiple
concepts into a single architecture, we conducted an ablation
study to validate the contribution of each incorporated unit
to the results obtained. The study involved removing the au-
toencoder, TFAM, PS and PU layers and training the network
without the perceptual loss (one modification at a time).

Four baselines were established for the experiments. The
first baseline replaced the autoencoder with a DConv layer
with a 5 × 5 kernel for shallow feature extraction [15]. The
second baseline removed the TFAM module and adjusted
the output of the previous layer to match the input shape
of the following layers. The third baseline replaced the PS
and PU layers with transposed and strided convolution layers,
respectively, as they are analogous [29]. Finally, in the fourth
baseline, the perceptual loss was replaced by MSE, which is
commonly used in super-resolution research [2], [3]. Table II
presents the results.

TABLE II
RECOGNITION RATES (%) ACHIEVED IN THE ABLATION STUDY. “ALL”

REFERS TO LPS WHERE ALL CHARACTERS WERE RECOGNIZED
CORRECTLY; ≥ 6 AND ≥ 5 REFER TO LPS WHERE AT LEAST 6 OR 5

CHARACTERS WERE RECOGNIZED CORRECTLY, RESPECTIVELY.

Approach RodoSol-ALPR PKU
All ≥ 6 ≥ 5 All ≥ 6 ≥ 5

Proposed (w/o autoencoder) 32.7 55.0 70.1 73.8 90.2 96.6
Proposed (w/o TFAM) 33.3 55.0 69.6 73.1 90.1 96.6
Proposed (w/o PS and PU layers) 34.3 54.8 68.5 70.4 89.9 96.7
Proposed (w/o perceptual loss) 35.6 57.3 71.9 72.4 91.4 97.1

Proposed 39.0 59.9 74.2 72.0 90.3 97.3

The results of the experiments on the RodoSol-ALPR
dataset demonstrate that each of the units included in the
proposed system significantly contributes to its overall per-
formance. The complete system attained a recognition rate
of 39.0%, while the best version without one of the com-

ponents reached a recognition rate of 35.6%. The worst-
case scenario was when the autoencoder unit was removed,
resulting in a recognition rate of 32.7% for all characters
recognized. This is because the autoencoder module plays
a vital role in facilitating the extraction of shallow features.
Specifically, the autoencoder generates a mask by squeezing
and expanding the input image, highlighting the most critical
areas for reconstruction by the rest of the network. Without this
mask, the network struggles to identify the relevant features,
resulting in poor performance.

In contrast, the recognition rates in the PKU dataset were
only enhanced with the incorporation of PS and PU layers. We
conjecture that the other units are not required for this dataset
due to its images being considerably less complex than those
in the RodoSol-ALPR (as evidenced by the images in Fig. 3
and Fig. 4). This could explain why several authors opted to
conduct ablation studies solely on the largest and most diverse
dataset among those used in their experiments [13], [49], [52].

V. CONCLUSIONS

This article proposes a new super-resolution approach to
improve the recognition of low-resolution LPs. Our method
builds upon the existing MPRNet [15] and the architecture
proposed in our previous work [16] by incorporating subpixel-
convolution layers (PS and PU) in combination with a PLT-
FAM. We also introduce a novel perceptual loss that combines
features extracted from an OCR model with L1 loss to recon-
struct characters with the most relevant characteristics, while
also incorporating MSE to enhance overall image quality.

Our approach capitalizes on both structural and textural
features by using the PS and PU layers for custom scale
operations, rather than relying on conventional translational
invariance and interpolation techniques. An autoencoder with
PS and PU layers was integrated to extract shallow features
and generate an attention mask that is added to the original
input. The output of the autoencoder is processed by a RDB
to identify regions of interest for reconstruction, optimizing
computational resources and producing super-resolution im-
ages that emphasize relevant information.

We conducted experiments on two publicly available
datasets from Brazil and mainland China, which contain
a diverse range of LP images. The results showed better
recognition rates being achieved in the images reconstructed
by the proposed method than in those reconstructed by the
baselines. More specifically, for the RodoSol-ALPR dataset,
our method led to a recognition rate of 39.0% being achieved
by the OCR model, while the methods proposed in [16] and
[15] led to recognition rates of 31.3% and 4.0%, respectively.
Similarly, for the PKU dataset, our approach outperformed
both baselines, with the OCR model reaching a recognition
rate of 72.0%, compared to 35.5% and 22.5% for [16] and
[15], respectively. We have made available all datasets used
in our experiments (i.e., the LR–HR image pairs), as well as
the source code, in order to encourage further research and
development in the field of LPR super-resolution.



In the future, our plans include integrating a lexicon or
vocabulary into the network’s learning process to track the
character type that can occupy each position on LPs of a
specific layout. Additionally, we intend to create a large-scale
dataset for LP super-resolution, consisting of thousands of LR
and HR image pairs. We aim to collect videos in which the
LP is legible in one frame but not in another, enabling us to
assess existing methods in real-world scenarios and develop
novel methods.
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