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ABSTRACT

Automatic license plate recognition (ALPR) is a frequent research topic due to its wide-ranging practical applications. While
recent studies use synthetic images to improve license plate recognition (LPR) results, there remain several limitations
in these efforts. This work addresses these constraints by comprehensively exploring the integration of real and synthetic
data to enhance LPR performance. We subject 16 optical character recognition (OCR) models to a benchmarking process
involving 12 public datasets acquired from various regions. Several key findings emerge from our investigation. Primarily, the
massive incorporation of synthetic data substantially boosts model performance in both intra- and cross-dataset scenarios.
We examine three distinct methodologies for generating synthetic data: template-based generation, character permutation,
and utilizing a generative adversarial network (GAN) model, each contributing significantly to performance enhancement.
The combined use of these methodologies demonstrates a notable synergistic effect, leading to end-to-end results that
surpass those reached by state-of-the-art methods and established commercial systems. Our experiments also underscore
the efficacy of synthetic data in mitigating challenges posed by limited training data, enabling remarkable results to be
achieved even with small fractions of the original training data. Finally, we investigate the trade-off between accuracy and
speed among different models, identifying those that strike the optimal balance in each intra-dataset and cross-dataset
settings.

1 | Introduction in restricted areas are some practical applications for an ALPR
system [4, 5].

Automatic license plate recognition (ALPR) systems employ

image processing and pattern recognition techniques to locate In the deep learning era, ALPR systems typically include two

and recognize license plates (LPs) in images or videos [1-3]. stages: license plate detection (LPD) and LPR [6-8]. The former

Traffic law enforcement, toll collection, and vehicle access control refers to locating the LP regions in the input image, while the
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latter refers to identifying the characters on each LP. Recent
research has focused on the LPR stage [9-11], as generic object
detectors (e.g., YOLO) have achieved impressive results in the
LPD stage for some time now [12-14].

Increased mobility and internationalization set new challenges
for developing effective ALPR systems, as they must handle LPs
from multiple regions with non-standardized formats [15, 16].
While ALPR systems have exhibited remarkable performance on
LPs from diverse regions (e.g., Brazil, mainland China, Europe,
Taiwan, among others) due to advances in deep learning and the
increasing availability of annotated datasets [17-19], recent stud-
ies have indicated the existence of strong biases in ALPR research.
An example worth mentioning is [20], where the authors showed
that each dataset has a unique and identifiable “signature,” as a
lightweight classification model could predict the source dataset
of an LP image at levels significantly better than chance.

One way to mitigate the problem of biases in automatic license
plate recognition (ALPR) would be to embrace the “wildness”
of the internet to collect a large-scale dataset from multiple
sources [20, 21]. However, labeling such a dataset would be
very expensive and time-consuming [22-24], not to mention the
growing concerns surrounding privacy [25-27]. In this scenario,
synthetic data emerges as a practical alternative, offering a
cost-effective, privacy-preserving solution while providing the
diversity and scale needed to train deep learning-based mod-
els effectively.

Although recent research has explored creating synthetic LP
images to improve LPR performance, our analysis in Section 2
reveals certain limitations in these efforts. Existing studies
have predominantly employed a single methodology to gener-
ate synthetic LPs, leaving unanswered questions regarding the
potential for significantly enhanced outcomes by integrating
data generated from various methodologies. Additionally, most
works have focused on LPs from a single region, even though
this limitation has been acknowledged for many years in the
literature [28, 29]. To illustrate, researchers have trained separated
instances of generative models—e.g., GANs—for different LP
layouts. This approach becomes increasingly impractical and
even unfeasible as the number of LP layouts the ALPR system
must handle increases. Ultimately, the assessment of synthetic
data generation methods has primarily relied on the performance
of individual OCR models, overlooking the fact that images
created using a particular method may disproportionately favor
certain models over others.

This work aims to address the limitations described above by
delving further into the integration of real and synthetic data to
enhance LPR. Setting our research apart from previous studies,
we subject 16 well-known OCR models to a benchmarking
process across 12 public datasets acquired from multiple regions.
Synthetic LP images are created by drawing inspiration from
the three most widely adopted methodologies in the literature:
a rendering-based pipeline (templates), character permutation,
and a GAN model. We conduct ablation studies to demon-
strate the impact of each methodology on the final results
and the importance of synthetic data when training data is
scarce.

In summary, this paper makes the following contributions:

* The most extensive experimental evaluation conducted in the
field. While our focus lies on the LPR stage, as per recent
research trends, we also compare various models for detecting
the LPs and their corresponding corners within the input
images. Our end-to-end experiments cover both intra- and
cross-dataset evaluations, including an examination of the
speed/accuracy trade-off of the OCR models;

* We deviate from prior methodologies by introducing a
pipeline that employs a single GAN model to generate
images of LPs from diverse regions and across styles. Notably,
satisfactory outcomes are attained despite using a relatively
small number of real images for training. This success stems
from our approach of supplementing these real images with
many synthetic ones created by a different method while also
leveraging an OCR model to identify and filter out poorly
generated images;

* Our results show that the massive use of synthetic data
significantly improves the performance of the models, both
in intra- and cross-dataset scenarios. Remarkably, employing
the top-performing OCR model yields end-to-end results sur-
passing state-of-the-art methods and established commercial
systems. These findings are particularly impressive because
our models are not specifically trained for any particular LP
layout, and we do not rely on post-processing with heuristic
rules to improve the LPR performance on LPs from specific
regions;

* Our ablation studies reveal that each synthesis method
contributes considerably to enhancing the results, with a
substantial synergistic effect observed when combining them.
Incorporating synthetic data into the training set also proves
to be effective in overcoming the challenges posed by limited
training data, as commendable results are attained even when
using only small fractions of the original data;

* We will publicly release all synthetic images created for
training the OCR models, along with the accompanying code,
thus enabling the generation of new images.

While recent studies have introduced new recognition architec-
tures to boost LPR accuracy, our work adopts a complementary,
data-centric approach. We show that significant performance
improvements can be achieved across a wide range of archi-
tectures simply by enhancing the quality of the training data.
This strategy supports fair, architecture-agnostic comparisons
and emphasizes reproducibility and generalizability by pro-
viding plug-and-play training data that can be leveraged by
any OCR model.

The remainder of this paper is structured as follows. Section 2
outlines the prevalent methods for synthesizing LP images in the
literature. Section 3 elaborates on our methodology for generating
synthetic data, which are integrated with real data to train the
OCR models. Section 4 describes the experimental setup, includ-
ing the datasets and models explored. The results are presented
and analyzed in Section 5. Finally, Section 6 summarizes the key
findings of this study.
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2 | Related Work

In addition to the dataset bias mentioned in the previous section,
LPR faces challenges related to unbalanced data. The inherent
difficulty in collecting LP images from a variety of regions makes
most ALPR datasets exhibit a significant bias towards specific
regional identifiers [9, 30-32].

Considering the above discussion, many methods have been
proposed to generate synthetic LP images. These methods aim
to mitigate bias in the experiments and minimize the reliance
on large volumes of real images for training OCR models.
The subsequent paragraphs provide a concise overview of three
widely adopted methods.

A highly intuitive approach for creating LP images involves a
rendering-based process, particularly effective as LPs within a
specific region typically conform to a strict standard. Put simply,
such a method initiates with a blank template mirroring the
actual aspect ratio and color scheme of LPs from the target
region. Then, a random sequence of characters reflecting the
actual LP sequence scheme is superimposed onto the template.
Finally, transformations are applied to enhance the diversity of
the generated images.

Several works have effectively explored the above methodology,
including but not limited to [22, 24, 33]. Regarding the cre-
ation of LP images, these works primarily differed in the LP
layout synthesized and the specific transformations applied. For
instance, Bjorklund et al. [22] focused on creating Italian LPs,
Maier et al. [33] generated German LPs, and Gao et al. [24] synthe-
sized LPs from mainland China. In general, the transformations
applied include modifications in font thickness, pixel shifts
in character positions, LP rotation, adjustments in brightness
and contrast, and the introduction of random shadows and
noise.

Rendering-based methods face a significant limitation as they
generate images with inconsistent distributions compared to
real-world images, even when incorporating many transforma-
tions [24, 33, 34]. Consequently, LPR models trained solely on
such images often produce unsatisfactory outcomes when applied
to real-world images. Taking this into account, researchers have
explored various approaches for creating realistic LP images,
ranging from simpler methods such as character permuta-
tion to more complex strategies involving generative models
(see below).

Generating synthetic data through character permutation is a
simple yet effective method for achieving balance among char-
acter classes. Considering that each character’s position on a
given LP is labeled, one character can be replaced by another by
superimposing the corresponding patch. Typically, this procedure
focuses on replacing overrepresented characters in the training
set with those underrepresented. To our knowledge, Goncalves
et al. [35] were the first to explore this permutation-based
approach in the LPR context. Since then, several authors have
successfully applied it to construct well-balanced training sets
regarding character classes. The following paragraph presents
three examples and briefly describes the subtle variations in how
the respective authors implemented this method.

Shashirangana et al. [36] swapped character patches from distinct
LP images, while most authors limited their permutations to
character patches from the same LP to reduce illumination
inconsistencies. Al-batat et al. [37] refrained from permuting
patches of thin characters such as ‘1’ and ‘T’ to prevent potential
deformation caused by swapping them with wider characters. In
contrast, other authors addressed this issue by first expanding
the bounding boxes of smaller characters, incorporating portions
of the LP background into them, to ensure uniform sizing of
all characters before permutation. Lastly, although most authors
swapped letters with digits and vice versa, Laroca et al. [38]
only permuted letters with letters and digits with digits, enabling
models to implicitly learn the fixed positions for letters and digits
in certain LP layouts.

Concerning the use of generative models in LPR research, the
prevailing choice has been GANs. The application of conditional
GANSs to image-to-image translation was first investigated by
Isola et al. [39], with the proposal of the widely recognized pix2pix
model. Pix2pix learns to map an image from the input to the
output domain using an adversarial loss in conjunction with the
L1 loss between the output and target images, thus requiring
paired training data. While paired image-to-image translation
models have shown remarkable results since this seminal work,
acquiring such training data (i.e., matching image pairs with
pixel-wise or patchwise labeling) can be time-consuming or even
unrealistic. To tackle this challenge, CycleGAN, DualGAN and
DiscoGAN provided a novel perspective (nearly simultaneously),
in which the models discover relations between two visual
domains without any explicitly paired data. As paired data is often
unavailable, unpaired image-to-image translation has gained
much attention in subsequent years. In the following paragraphs,
we briefly describe recent publications that have employed GANs
to generate synthetic data for improved LPR.

Wang et al. [31] employed CycleGAN [40] to transform a
large number of script LP images, created using OpenCYV, into
realistic ones. Implementation details were not provided. Sim-
ilarly, Zhang et al. [30] trained CycleGAN without the second
cycle-consistency loss (i.e., they discarded the loss responsible
for mapping real images into synthetic ones) to generate LP
images with different characters and distinct characteristics. They
trained multiple networks, each specialized in producing images
with specific attributes. For instance, one model was trained
to transform script images into bright LPs, while another was
trained to convert script images into dark LPs, and so forth.
In both works, LPs of only a few different styles (all from
mainland China) were synthesized. Fan and Zhao [2] adopted
essentially the same approach but trained CycleGAN with the
Wasserstein distance loss. Their experiments focused solely on
two distinct LP styles, one from mainland China and the other
from the Taiwan region.

Han et al. [23] trained CycleGAN, StarGAN and pix2pix to
generate images of the prevalent style of Korean LPs from script
images. Their findings indicated that pix2pix produced more
realistic and diverse LP images, supported by both qualitative
comparisons and the superior performance of an OCR model
trained with pix2pix-generated images compared to instances
of the same model trained with images from CycleGAN and
StarGAN. Shashirangana et al. [36] employed pix2pix to convert
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color images from the CCPD dataset into infrared images.
They explored the KAIST multi-spectral dataset, which has 95k
paired color and infrared images, for training the pix2pix model.
The researchers suggested that the generated images could be
employed to train an OCR model capable of identifying LPs
extracted from real images captured during nighttime periods.
Shvai et al. [32] built on several existing frameworks (e.g., AC-
GAN and PG-GAN) to generate high-quality LP images with
distinct sequences. In summary, their model achieves diversity by
inputting the generator with different random latent vectors. It is
worth noting that the authors focused on generating a single style
of LPs, specifically the most common style found on vehicles in
Texas, United States.

When examining the works described in this section, as well as
others omitted for brevity, it becomes clear that the evaluation of
methods for generating synthetic data has relied on the outcomes
produced by individual OCR models. For example, Wang et al.
[31] assessed the efficacy of their strategy solely based on the
results achieved by their convolutional neural network (CNN)-
based model. Similarly, Zhang et al. [30] considered only the
results reached by an OCR model based on Xception, and Fan
and Zhao [2] considered only the results yielded by CNNG, their
multi-task model. We posit that such an evaluation is subop-
timal because images created through a specific method may
disproportionately benefit certain approaches over others. This
phenomenon was evidenced in [41], where two segmentation-free
models (Multi-Task and CRNN) had a much higher performance
gain than the YOLO-based CR-NET model [42] when incorporat-
ing images generated via character permutation into the training
set. Therefore, there is a lack of studies focused on evaluating
these techniques’ efficiency based on the results achieved by
multiple OCR models with varying characteristics.

Another point that catches our attention is that most works still
focus on LPs from a single region. In fact, it is not uncommon
for only a very specific LP style (e.g., single-row blue LPs from
mainland China) to be considered in the experiments [23, 32,
33]. Researchers have often opted to train separate instances of
the proposed models for each LP layout. For example, one model
generates/recognizes LPs from the Taiwan region, another model
generates/recognizes LPs from mainland China, and so forth [22,
43,44]. As mentioned earlier, this approach becomes increasingly
impractical and even unfeasible as the number of LP layouts the
ALPR system must handle increases. This impracticality arises
from the necessity of adjusting parameters and retraining models
whenever incorporating support for LPs from new regions or even
different LP styles within the same region.

Ultimately, it is crucial to emphasize that within the examined
literature, each work has exclusively generated synthetic LPs
through a single methodology, such as relying solely on templates,
employing only character permutation, or using GANs exclu-
sively. It remains unclear whether relying on a single approach is
sufficient for optimal results, or if considerably superior outcomes
could be attained by integrating data generated through diverse
methodologies. This study addresses this gap by benchmarking
16 OCR models across 12 publicly available datasets from dif-
ferent regions. We explore all three methodologies mentioned
earlier for generating synthetic data, which are elaborated on
in the following section. To our knowledge, this represents the

most extensive experimental evaluation conducted in the ALPR
field.

3 | Synthetic Data

This section details our approach to generate synthetic data,
which is combined with real data to train the deep models for
LPR. We start by outlining the methodology for creating LP
images using blank templates and character patches sourced from
the internet. Afterward, we delve into the process of producing
new LP images by permuting the positions of the characters
within each LP. Lastly, we elaborate on our utilization of a
paired image-to-image translation model (pix2pix) to generate
realistic LP images.

3.1 | Templates

While there are various approaches for creating LP images using
templates, the method employed in this study is quite straightfor-
ward. First, blank templates that match the aspect ratio and color
scheme of real LPs are sourced from the internet'. Subsequently,
a sequence of characters, selected randomly yet crafted to mirror
the patterns found on authentic LPs, is superimposed onto each
template. Figure 1 shows examples of LP images generated
through this process. Naturally, during the training of the OCR
models, we subject these images to various transformations to
introduce variability. These transformations encompass a range
of techniques, including but not limited to random perspective
transformation, introduction of random noise, incorporation of
random shadows, and application of random changes to hue,
saturation and brightness.

To better simulate real-world scenarios, the templates we gener-
ate using this method are derived from the LP styles observed
within the training sets of the datasets explored in our experi-
ments (see Section 4.1). In other words, we do not create templates
for LP styles found exclusively in the test sets. To illustrate,
one of the datasets we employ in our cross-dataset assessments
contains images of electric vehicles registered in mainland China,
which feature 8-character green LPs. Despite this, we refrain from
creating templates for this LP style since it is not present in
the training set.

An appealing aspect of this synthesis method lies in its ability
to generate any sequence for each template while adhering to a
predefined number of characters. Nevertheless, two drawbacks
deserve attention. First, as highlighted in Section 2, images
produced by such rendering-based approaches often exhibit
inconsistent distributions compared to real-world images. Sec-
ond, sourcing background and character images online for certain
LP styles, particularly those less popular or recently introduced,
can pose a challenge. This challenge plays a key role in our
decision not to create templates for every LP style present in
the training set, in addition to the inherent scope limitations
of our study.

We generate 100k LP images employing this approach, a num-
ber determined through preliminary experiments that showed
slightly improved outcomes compared to using 50k images and

40f21

IET Intelligent Transport Systems, 2025



(B< RNL | H3AYGHE € & K] |

— NEW YORKS™ -

P76'TNP JoA7685

Garden State

Mis4

The Spirk o America,

CRE L

5J64BN

L JNVER I GRF
K1255T 7588 [NLE

DVM-9093 [k LY |,,JBAZBCIL"| ”,,FHUSGEZ ” ECPSE4Z |

v u8 #dm
876 | Lonss é"é‘zvé‘ 37vYsF | KG98-WB

B 90w NE ) [INEEN) BGJIP: 4YKJQ] 5PV24FT P4Z0 LSY

NC PRTM_ [ YZK OF JG

FIGURE 1 |

| 0J%9G67-7N [ED9TSKLLF)

Examples of the template-based LP images we created for this work. Notably, any sequence can be generated for each template. The

background and character images were gathered from the internet . During training, these LP images are subjected to various transformations to

introduce variability.

FIGURE 2 |
the characters within each LP and then applying transformations. The

Some LP images created by permuting the positions of

images in the top row are the originals, while the others were synthesized.

similar performance to using 200k images. The number of
synthesized LPs is balanced across the six explored LP layouts
(i.e., American, Brazilian, Chinese, European, Mercosur, and
Taiwanese)?, and the LP sequences are defined to maximize class
balance for each character position.

3.2 | Character Permutation

Generating synthetic data through character permutation is also
a straightforward process, outlined as follows. Initially, each
character’s bounding box (x, y, w, h) must be labeled. Then, if
all the bounding boxes share the same width and height, the
patch of each character can be replaced with another according
to predefined rules. However, it is important to highlight that
characters from distinct classes often differ in size, especially in
terms of width. Adhering to established practices in the literature
(refer to Section 2), we first expand the bounding boxes of smaller
characters, incorporating small portions of the LP background
into them, so that all characters have identical dimensions.
Subsequently, we replace patches of characters that are overrep-
resented in the training set with patches from those that were
underrepresented. To maintain consistency in illumination, we
limit character permutation to patches within the same LP.

In Figure 2, we show examples of LP images generated by
permuting the character positions on three LPs and applying
random transformations of scale, rotation, brightness and crop-
ping. Despite the impressive visual outcomes, it is essential
to acknowledge certain limitations associated with this image

synthesis method. First, manually labeling the bounding box
for each character on every LP image is a laborious, time-
consuming, and error-prone task [19, 22, 44]. Second, this method
can only be applied to LP images where the character bounding
boxes do not intersect (typically restricting its use on tilted
LPs). Otherwise, parts of some characters may become obscured
or replicated during the permutation process. Lastly, as the
permutations involve repetitions and are limited to characters
within the same LP, the OCR models may inadvertently learn
undesirable correlations or biases. For instance, Gongalves et al.
[35] pointed out that characters from initially underrepresented
classes exhibited a strong self-correlation, as they are more likely
to appear in multiple positions on the permuted LPs (this is
illustrated in Figure 2 as well).

We conducted a series of experiments in the validation set to
determine the number of LP images to generate through this
approach. We then generated 300k images, evenly distributed
across the different LP layouts, as we found that generating a
higher volume of images did not yield improved results.

3.3 | Image-To-Image Translation (pix2pix)

As outlined in Section 2, most previous works explored unpaired
image-to-image translation methods (e.g., CycleGAN) to generate
realistic LP images due to the lack of labeled paired data. In this
work, we exploit the character permutation method described
above to tackle this problem. More specifically, we generated over
one million new LP images by shuffling the character positions on
approximately 2k images from the training set of public datasets
and the internet. While Laroca et al. [1] provided labels for most
of these images, we further enriched the annotations by labeling
the positions of the LP corners. The complete set of annotations
will be publicly available.

Considering that these images are accompanied by precise anno-
tations for the position of each LP corner and the bounding
box of every character, they can be used to train paired image-
to-image translation methods. In this study, we employ the
renowned pix2pix model [39] for synthesizing many realistic
images of LPs from multiple regions. We remark that although
there are newer models available that would certainly yield
better results than pix2pix, our decision to opt for pix2pix is
primarily based on its widespread availability across various
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corners, as well as for the bounding box of each character.

frameworks such as Chainer, Keras, PyTorch, TensorFlow, Torch,
and others®. This choice is particularly significant for our
research, given that part of our experiments were conducted on
an old CPU lacking AVX instructions, significantly limiting the
available framework options.

The paired data required for training the pix2pix model is
prepared as follows. For each LP image generated through
character permutation, which serves as the intended output, a
corresponding segmentation mask is created to serve as the input.
These masks are designed such that each color represents a
distinct LP layout class or character class. For example, as shown
in Figure 3, the digit ‘0’ is indicated by a vivid red color (228, 28,
26), the letter ‘A’ is denoted by a dark brown shade (126, 47, 0),
the Mercosur layout is represented by a purplish-magenta tone
(187, 0, 170), and the Chinese layout is denoted by a gray color
(127, 127, 127). The Glasbey library* was employed to generate a
set of colors that are maximally distinguishable from each other.
Black (0, 0, 0) and similar shades are avoided in this process
since black in the input mask represents the background. Notably,
the background in the output LP image consists of gray pixels.
This choice was made because using the original background led
to inferior results.

After completing the model’s training, the next step involves
using it to generate hundreds of thousands of new LP images.
Intuitively, this task is accomplished by feeding the model with
segmentation masks derived from randomly selected LP layouts
and character sequences. While the characters are sampled from
the valid alphabet per position, we ensure a balanced distribution
of character classes at every position.

Upon examining the generated LP images, we discovered that
although many high-quality LPs were produced, a notable portion
of them also displayed certain issues. The primary issue identified
was the distortion of characters or their blending into two distinct
classes. For instance, a generated character might exhibit a fusion
of traits from ‘0’ and ‘8’, with the defining strokes that typically
differentiate the two appearing faint and indistinct. To address
this matter, we ran the Fast-OCR model, which demonstrated
superior cross-dataset results among a dozen recognition models
in [38], on the millions of generated images and selected the
top N predictions according to their associated confidence values.

[l mor BT oo

EErrT] TR X

input

output

output input output
IIIIIIII"B.T FB80_5|
output input output

output input output

Examples of image pairs used for training the pix2pix model. To create the input masks, labels are required for both the LP’s layout and

Specifically, we selected the top 50k images for each of the six
explored LP layouts, totaling 300k images. This strategy proved
effective in filtering out most images with defects, although it may
have excluded some instances with a higher degree of variability.
Examples of the selected images are shown in Figure 4.

It should be noted that we train the pix2pix model to produce a
blurred representation instead of Chinese characters (this can be
seen in Figures 3, 4). This adjustment is made due to the absence
of class labels for these characters in the training set. Accurately
labeling these characters poses a challenging task for individuals
not proficient in Chinese, which is the case for our team. Further
details on how we handle Chinese characters in our experiments
can be found in Section 4.3.

One might question the rationale behind employing segmenta-
tion maps as input for the pix2pix model, rather than using LP
templates. While we acknowledge that using templates as input
would likely yield similar or even better results, the lack of LP
style-related annotations in public datasets poses a challenge. The
provided information is limited to the geographical region where
the images were collected (e.g., Europe, mainland China, and the
United States). Fundamentally, adopting LP templates as input
would entail labeling the specific style of each LP and searching
online platforms for the corresponding templates and character
patches (or creating them using OpenCV or similar tools). This
is most likely why previous works explored very few LP styles in
their experiments [2, 30, 31].

The major limitation of this method stems from its reliance on
the training data, as it cannot synthesize LP layouts that are not
included in the training set [24].

4 | Experimental Setup

This section describes the experimental setup adopted in this
work. We first present the datasets explored, elucidating their
division into training, validation and test subsets. Subsequently,
we list the OCR models we implemented for our assessments,
providing the rationale for their choice over alternative options.
Lastly, we detail how the performance evaluation is conducted.
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FIGURE 4 | Examplesofselected images from those generated using pix2pix. From top to bottom, we show American, Brazilian, Chinese, European,

Mercosur, and Taiwanese LPs.

TABLE 1 | The 12 datasets used in our experiments.

Dataset Images Resolution LP layout
Caltech Cars [45] 126 896 X 592 American
EnglishLP [46] 509 640 x 430 European
UCSD-Stills [47] 291 640 x 430 American
ChineseLP [48] 411 Various Chinese
AOLP [49] 2049 Various Taiwanese
OpenALPR-EU? [50] 108 Various European
SSIG-SegPlate [51] 2000 1920 X 1080  Brazilian
PKU? [52] 2253 1082 x 727 Chinese
UFPR-ALPR [53] 4500 1920 x 1080 Brazilian
CD-HARD? [54] 102 Various Various
CLPD? [30] 1200 Various Chinese
RodoSol-ALPR [55] 20000 1280 X 720  Brazilian &

Mercosur

2Datasets used only for testing the deep models (i.e., cross-dataset experi-
ments).

While different machines were used for model training, all testing
experiments were conducted on a PC equipped with an AMD
Ryzen Threadripper 1920X 3.5GHz CPU, 96 GB of RAM running
at 2133 MHz, an SSD with read and write speeds of 3500 MB/s
and 3000 MB/s, respectively, and an NVIDIA Quadro RTX 8000
GPU (48 GB).

4.1 | Datasets

As shown in Table 1, our experiments were conducted on
images from 12 well-known public datasets gathered over the
past two decades across distinct regions. Figure 5 presents
representative LP images from these datasets, highlighting the
variability in LP layouts and visual characteristics. As detailed

in the following paragraph, eight of these datasets were used
for training, validation, and testing of the selected models, while
the remaining four datasets were reserved exclusively for testing
(cross-dataset experiments).

For reproducibility, here we detail how we split the images from
each dataset into training, validation and test sets®. The UCSD-
Stills, SSIG-SegPlate, UFPR-ALPR and RodoSol-ALPR datasets
were divided according to the protocols defined by the respec-
tive authors. The other datasets, which do not have standard
protocols, were split following prior studies. More specifically,
the images from the OpenALPR-EU, PKU, CD-HARD and CLPD
datasets were used exclusively for testing, as in [18, 44, 56]. The
Caltech Cars dataset was randomly divided into 63.5% of the
images for training/validation and 36.5% for testing, as in [57-
59]. Following Panahi & Gholampour [60], Henry et al. [17],
Beratoglu & T6reyin [61], we randomly split the EnglishLP dataset
as follows: 80% of the images for training/validation and 20%
for testing. Regarding the ChineseLP dataset, we followed the
protocol adopted by Laroca et al. [1, 38]: 40% of the images
for training, 20% for validation, and 40% for testing®. Lastly, we
divided each of the three subsets of the AOLP dataset (i.e., AC, LE,
and RP) into training and test sets with a 2:1 ratio, as Xie et al. [13],
Zhuang et al. [62], Liang et al. [63], and used 20% of the training
images for validation.

To ensure a minimum of 500 training images for each LP layout,
we expanded our training set with 772 images from the internet.
These images were labeled and made available by Laroca et al.
[1] and encompass 257 American LPs, 347 Chinese LPs, and
178 European LPs. Furthermore, to address potential overfitting
issues, we employed Albumentations [64]—a popular image
augmentation library—to balance the number of training images
from different datasets.

We opted not to explore the CCPD dataset [7] in our experiments,
despite its widespread use in the literature. There are two primary
reasons for this decision. First, the dataset comprises highly
compressed images, significantly reducing the legibility of the
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FIGURE 5 | Representative LPs from the datasets used in our experiments, highlighting the diversity of LP layouts and visual characteristics.

Adapted from [38].

LPs [18], and this does not align with our intended applica-
tion. Qiao et al. [65] even observed that some images within
CCPD are too blurry for the LPs to be recognized. Second, the
CCPD dataset has experienced multiple updates and expansions
since its introduction. Consequently, there is an inconsistency
regarding the dataset’s size across different studies. While some
sources claim it contains 250k images [2, 5, 63], others suggest
a range of 280-290k images [24, 44, 66], whereas the current
version has 366,789 images. The divergence in test sets across
different versions renders the results reported in various studies
not directly comparable.

4.2 | OCR Models

This work compares 16 OCR models applied to the LPR task.
Table 2 presents an overview of these models, listing the original
application for which they were designed and specifying the
framework we used to implement them.

We selected these models for two primary reasons. First, they
have a proven track record of success in OCR tasks (including
but not limited to LPR) [2, 10, 18, 73, 74, 78]. Second, we are
confident in our ability to train and adjust them effectively to
ensure fairness in our experiments, as the authors provided
enough details about the model architectures, and also because
we designed/employed similar networks in previous works [35,
38, 76, 77]. We are unaware of any work in the ALPR literature
where so many OCR models were explored in the experiments.

Each model was trained and tested using either the framework
in which it was originally implemented or well-known public
repositories associated with it. In summary, the YOLO-based

TABLE 2 | The 16 OCR models explored in our experiments.

Model Original application

Framework: PyTorch®

R?AM [67] Scene text recognition
RARE [68] Scene text recognition
STAR-Net [69] Scene text recognition
CRNN [70] Scene text recognition
GRCNN [71] Scene text recognition
Rosetta [72] Scene text recognition
TRBA [73] Scene text recognition

ViTSTR-Base [74]
VIiTSTR-Small [74]
VIiTSTR-Tiny [74]

Scene text recognition
Scene text recognition
Scene text recognition
Framework: Keras®

Holistic-CNN [75] License plate recognition

Multi-Task [35] License plate recognition

Multi-Task-LR [76] License plate recognition

CNNG [2] License plate recognition
Framework: Darknet’

CR-NET [42] License plate recognition

Fast-OCR [77] Image-based meter reading

models (i.e., CR-NET and Fast-OCR) were implemented using
the Darknet framework’; the multi-task models (those listed in
the middle section of Table 2) were implemented using Keras?;
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TABLE 3 |
by IWPOD-NET were converted into bounding boxes.

Results obtained by YOLOv4-CSP and IWPOD-NET in the LP detection stage (@ IoU > 0.7). For this evaluation, the corners predicted

Caltech UCSD- SSIG- UFPR- RodoSol-
Cars  EnglishLP Stills ChineseLP AOLP SegPlate ALPR  ALPR
Model Metric #46 #102 # 60 #161 # 687 #804 #1800 #8,000 Average
YOLOv4-CSP Recall 100.0% 99.0% 100.0% 98.1% 99.9% 100.0% 99.2% 100.0% 99.5%
IWPOD-NET 95.7% 100.0% 100.0% 97.5% 99.7% 98.8% 82.4% 99.6% 96.7%
YOLOv4-CSP  Precision  100.0% 97.1% 96.8% 98.1% 94.8% 94.9% 97.8% 99.6% 97.4%
IWPOD-NET 66.7% 77.9% 73.2% 83.1% 88.3% 61.6% 62.2% 78.4% 73.9%
YOLOv4-CSP  F-score 100.0% 98.1% 98.4% 98.1% 97.3% 97.5% 98.5% 99.8% 98.5%
IWPOD-NET 81.2% 88.9% 86.6% 90.3% 94.0% 80.2% 72.3% 89.0% 85.3%
B.hh"" ‘r R - " ‘[ ‘—AUOA
B30 g BBL-2416 EiKS
(a) detected LP regions (b) rectified LP regions
FIGURE 6 | Two LPs before and after the rectification process. Observe that the rectified LPs resemble frontal views, becoming more horizontal,

tightly bounded, and easier to read.

and the other models were implemented using a popular fork of
the open source repository of Clova Al Deep Text Recognition
Benchmark®.

The hyperparameters used for training the models were defined
based on preliminary experiments carried out in the validation
set and are as follows. In Darknet, we employed the stochastic
gradient descent (SGD) optimizer, 65k iterations, batch size = 64,
and learning rate = [1073, 107, 107°] with decay steps at 40%
and 70% of the total iterations. In Keras, we used the Adam
optimizer, learning rate = 1073, batch size = 64, max epochs = 100,
and patience = 7 (the number of epochs with no improvement
after which training is stopped). In PyTorch, we adopted the
following parameters: Adadelta optimizer (decay rate p = 0.95),
300k iterations, and batch size = 128.

4.3 | Performance Evaluation

We present the models’ performance for each dataset by calculat-
ing the ratio of correctly recognized LPs to the number of LPs in
the test set. We remark that an LP is deemed correctly recognized
only if all its characters are precisely identified, given that a
single misidentified character can lead to the misidentification
of the vehicle.

As mentioned in Section 1, recent research has placed emphasis
on the LPR stage [10, 11, 19, 24]. However, in our experiments, the
LP patches fed into the recognition models were not cropped and
rectified directly from the ground truth. Instead, we detected the
LPs in the original images using YOLOv4-CSP [79] and rectified
them through a combination of CDCC-NET [77]—for locating
the LP corners—and perspective transformation. We adopted this
procedure to fairly compare our results with end-to-end ALPR
systems and to more accurately simulate real-world scenarios,
where the LPs are not always optimally detected.

We chose YOLOv4-CSP over more recent models such as
YOLOV10 and YOLOVII1 for three practical and interconnected
reasons. First, it is implemented in a fast and mature C/C++ ver-
sion of the Darknet framework, supporting real-time processing
in resource-constrained environments. Second, it already delivers
strong performance in our experiments, with an F-score of 98.5%
at ToU > 0.7 across all datasets (see Table 3 in Section 5.1),
which we consider sufficient for the purposes of this study. Third,
its outputs are directly utilized by CDCC-NET to locate the LP
corners used in the rectification step—a crucial process that helps
align LPs and reduce the impact of minor detection errors (the
rectification process is detailed in the next paragraph). Although
we acknowledge that more recent YOLO versions generally offer
higher detection accuracy, YOLOv4-CSP meets both the accuracy
and efficiency requirements of our pipeline.

We rectify each LP by calculating and applying a perspective
transform from the coordinates of the four corners in the detected
LP region to the corresponding vertices in the “unwarped” image.
These corresponding vertices were defined as follows: (0, 0)
corresponds to the top-left corner; (max,, — 1, 0) is the top-right
corner; (max,, — 1, max, — 1) refers to the bottom-right corner;
and (0, max, — 1) indicates the bottom-left corner, where max,,
denotes the maximum distance between the top-right and top-left
x coordinates or the bottom-right and bottom-left x coordinates,
and max, is the maximum distance between the top-left and
bottom-left y coordinates or the top-right and bottom-right y
coordinates. The rectification process is illustrated in Figure 6.
Recent works that exploited LP rectification to improve the
recognition results include [2, 18, 44, 80, 81].

It is essential to highlight that, in our experiments, we refrained
from using prior knowledge about individual LP layouts to
enhance the results through post-processing. As an illustration,
despite being aware that all LPs in a given dataset or particular
region adhere to a fixed pattern (e.g., Brazilian LPs are composed
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TABLE 4 |
NME, where lower values indicate higher accuracy.

Corner detection results achieved by four models within the regions found by YOLOv4-CSP. The results are presented in terms of LP-

Caltech UCSD- SSIG- UFPR- RodoSol-
Test set # LPs Cars EnglishLP Stills ChineseLP AOLP SegPlate ALPR  ALPR
#46 #102 #60 #161 # 687 #804 #1800 #8,000 Average

Model

LocateNet [84] 0.0739 0.0359 0.0782 0.1092 0.0730  0.0329  0.0556  0.0592 0.0647
Hybrid-MobileNetV2 [85] 0.0323 0.0226 0.0352 0.0391 0.0332  0.0214  0.0313  0.0383 0.0317
IWPOD-NET [18] 0.0244 0.0143 0.0205 0.0138 0.0205  0.0098 0.0194 0.0141 0.0171
CDCC-NET [77] 0.0160 0.0117 0.0164 0.0176 0.0142  0.0098 0.0168 0.0150 0.0147

of three letters followed by four digits), we treat the predictions
made by the models as final. We argue that by exposing the
models to sufficient variability in the training stage, they can, to
varying extents, implicitly learn and leverage such information to
yield better predictions.

We follow the methodology adopted by Li et al. [82] and
Laroca et al. [55], where all Chinese characters are collectively
represented as a unified class denoted by ““. Accordingly, all
results from other studies presented in our comparison with the
state of the art (Section 5.2.2) were obtained in the same way,
disregarding Chinese characters.

5 | Results and Discussion

This section presents and analyzes the outcomes of our experi-
ments. Section 5.1 offers a concise overview of the results obtained
in detecting the LPs and locating the corresponding corners.
The precise detection of the LP corners is pivotal for accurately
rectifying the LPs before recognition. Section 5.2 then delves
into a detailed examination of the end-to-end results obtained by
employing different OCR models.

5.1 | LP Detection and Corner Detection

Various quantitative criteria can be employed to evaluate detec-
tion tasks. Our assessment includes the widely adopted Precision,
Recall and F-score metrics. In line with prior studies [7, 8, 81], we
consider the detections correct when the intersection over union
(IoU) with the ground truth exceeds 0.7. Detections that meet this
threshold typically encompass all LP characters.

Table 3 presents the results obtained by YOLOv4-CSP [79] and
IWPOD-NET [18] (a well-known model specifically designed
for LP detection). Three key observations can be drawn from
the results: (i) YOLOv4-CSP demonstrated satisfactory results,
both in terms of Precision and Recall, with instances of slightly
lower Precision attributed to unlabeled LPs in the background of
frames; (ii) while IWPOD-NET directly predicts LP corners rather
than bounding boxes, its performance is suboptimal in scenarios
where the vehicles are far from the camera, as evidenced by the
Recall rates reached in the UFPR-ALPR dataset; and (iii) IWPOD-
NET tends to predict a significant number of false positives,
leading to notably low Precision rates. Despite our exploration of
higher detection thresholds, doing so led to the exclusion of many

true LPs (lower Recall rates). These observations likely influenced
the decision of [18] to feed regions identified by a vehicle detector
(YOLOv3) into IWPOD-NET instead of applying it directly to
the original image (vehicle detection was not investigated in this
study because most datasets lack labels for vehicle bounding
boxes). Balancing Precision and Recall is crucial for an efficient
system operation, as it relies on accurately detecting all LPs while
minimizing false positives.

To rectify the LPs found by YOLOv4-CSP, it is necessary to locate
the four corners associated with each of them. Table 4 presents a
comparison of the results obtained in this process by four models
specifically designed for corner detection, including IWPOD-
NET. The evaluation is carried out in terms of LP-NME [83],
a metric inspired by normalization mean error (NME), which
in turn is commonly employed to evaluate the quality of face
alignment algorithms. LP-NME is defined as follows:

4 A
. c, -G
LP-NME(C, €) = % > w , 1)
i=1

where C and € are the ground truth and predicted corners,
respectively, and d is the normalization factor. Following [83],
we adopt the diagonal length of the smallest bounding box that
completely encloses the LP as the normalization factor.

CDCC-NET stands out as the top-performing model, achieving
the lowest average LP-NME value of 0.0147. It is noteworthy,
however, that the IWPOD-NET model outperformed CDCC-NET
in two datasets and achieved near-identical results in another.
Figure 7 showcases the predictions made by all models for five
distinct LP images. Although there is an evident similarity in
the predictions for some LPs, the CDCC-NET model exhibits
superior overall accuracy.

The findings outlined in this section substantiate our choice to
employ YOLOv4-CSP for LP detection and CDCC-NET for corner
detection. As elaborated in Section 4.3, the corners predicted by
CDCC-NET are used to rectify the LPs before recognition.

5.2 | Overall Evaluation (End-To-End)

This section conducts a thorough comparative analysis of the
OCR models, assessing their performance and contrasting the
end-to-end results attained when employing the top-performing
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the predicted corner positions.

model with those reached by state-of-the-art approaches and
established commercial systems (Sections 5.2.1, 5.2.2, 5.2.3).
Notably, the evaluation covers both intra- and cross-dataset
scenarios. Additionally, ablation studies are incorporated to
demonstrate the impact of each explored method for generating
synthetic images on the final results, as well as the importance
of synthetic data when training data is scarce. Finally, Sec-
tion 5.2.4 examines the trade-off between speed and accuracy
exhibited by the recognition models, highlighting those that strike
a favorable balance.

5.2.1 | Intra-Dataset Experiments

Table 5 presents the end-to-end results obtained across the dis-
joint test sets of the eight datasets used for training and validating
the models. In these experiments, all OCR models were trained
using real images combined with synthetic ones generated by the
three methods described in Section 3. Later in this section, we
present an ablation study that details the contribution of each
image synthesis method to the results achieved.

The first observation is that all models performed surpris-
ingly well, reaching average recognition rates between 94.6%
and 97.9%. It is noteworthy that the mean results were well above
90% across all datasets, including UFPR-ALPR, which is known
to be quite challenging [5, 86, 87]. According to our analysis of
the results (presented throughout this section), such impressive
results are mainly due to the massive use of synthetic data
combined with the LP rectification stage.

Another point that immediately draws attention is that multiple
models achieved the best result in at least one dataset. For
instance, the CNNG excelled in the UFPR-ALPR dataset, while
the Multi-Task-LR and Holistic-CNN models reported the highest
recognition rates on ChineseLP and RodoSol-ALPR, respectively.
Interestingly, the models that performed better on average (i.e.,
STAR-Net and TRBA) did not achieve the best results in six
of the eight datasets; some models actually reached the best
result in one dataset and the worst in another (e.g., see the
results achieved by the CNNG and Holistic-CNN models on

-
e
;l-

IWPOD-NET CDCC-NET

Representative qualitative results achieved by four different models in corner detection. For better viewing, we draw a polygon from

the EnglishLP dataset). These results emphasize the impor-
tance of evaluating and comparing OCR models on various
datasets.

Figure 8 showcases the predictions yielded by the STAR-Net
and TRBA models for LPs with distinct characteristics. The
outcomes underscore the models’ robustness in handling diverse
LP layouts, images with varying resolutions, LPs with different
numbers of characters arranged in one or two rows, and scenarios
where the characters are partially occluded. Impressively, some of
these LP styles were not even included in the training set. Overall,
errors are limited to instances where one character closely
resembles another, often due to factors such as low resolution and
artifacts on the LP. Although this qualitative analysis focuses on
the two models that achieved the best average results across the
datasets, the other models generally produced similar predictions.

An important aspect to highlight is the effectiveness of synthetic
data in scenarios with limited training samples—a common
issue in public datasets collected from specific regions. Table 6
reports the average recognition rates of STAR-Net and TRBA
when trained on progressively smaller subsets (50%, 25%, 10%,
5% and 1%) of the original training set, comprising images from
the eight datasets listed in Section 4.1, both with and without
the addition of synthetic data generated as described in Sec-
tion 3. Remarkably, incorporating synthetic data in the training
phase enabled commendable results to be reached even when
using small fractions of the original training set. For example,
both STAR-Net and TRBA achieved an average recognition rate
exceeding 94.5% across all datasets when trained with only 10%
of the original training set but supplemented with synthetic
data. In contrast, relying solely on real images with common
transformations as data augmentation led to a substantial decline
in the results. Specifically, the recognition rates dropped below
75% when halving the original training set and plummeted to
approximately 1% when using only 10% of it. This underscores the
effectiveness of synthetic data in mitigating the challenges posed
by limited training data.

Table 7 elucidates the effectiveness of each image synthesis
method described in Section 3, as well as their combination, to the
results obtained. It reveals that each method contributes consid-
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TABLE 5 |

Recognition rates obtained by all models under the intra-dataset protocol, where each model was trained once on the union of the training

set images from these datasets (plus synthetic data) and evaluated on the respective test sets. The best results achieved in each dataset are shown in bold.

Caltech UCSD- SSIG- UFPR- RodoSol-

Test set # LPs Cars EnglishLP Stills ChineseLP AOLP SegPlate ALPR ALPR
m #46 #102 #60 #161 # 687 #804 #1800 #8,000 Average
CNNG [2] 97.8% 91.2% 96.7% 98.8% 99.1% 98.8% 96.1% 97.1% 96.9%
CR-NET [42] 93.5% 96.1% 98.3% 96.9% 98.7% 98.0% 89.3% 88.3%* 94.9%
CRNN [70] 93.5% 96.1% 96.7% 95.7% 98.8% 97.5% 87.0% 92.2% 94.7%
Fast-OCR [77] 95.7% 97.1% 95.0% 96.9% 98.7% 96.0% 89.6% 88.1%* 94.6%
GRCNN [71] 97.8% 99.0% 96.7% 98.8% 99.0% 97.9% 87.4% 93.0% 96.2%
Holistic-CNN [75] 95.7% 91.2% 93.3% 99.4% 99.3% 98.4% 94.9% 97.9% 96.3%
Multi-Task [35] 97.8% 94.1% 100.0% 98.8% 99.1% 98.6% 93.3% 95.1% 97.1%
Multi-Task-LR [76] 95.7% 93.1% 93.3% 100.0% 99.6% 97.5% 94.6% 96.6% 96.3%
R2AM [67] 97.8% 94.1% 95.0% 98.8% 99.3% 99.3% 90.6% 94.4% 96.1%
RARE [68] 97.8% 97.1% 98.3% 98.1% 99.4% 99.1% 91.9% 96.5% 97.3%
Rosetta [72] 95.7% 98.0% 98.3% 98.1% 98.7% 98.3% 92.6% 96.0% 97.0%
STAR-Net [69] 97.8% 99.0% 98.3% 98.1% 99.1% 99.3% 94.7% 97.0% 97.9%
TRBA [73] 97.8% 99.0% 98.3% 98.8% 98.8% 99.3% 94.0% 97.3% 97.9%
ViTSTR-Base [74] 95.7% 96.1% 93.3% 99.4% 99.9% 99.4% 94.6% 97.7% 97.0%
ViTSTR-Small [74] 95.7% 96.1% 98.3% 98.1% 99.1% 98.5% 94.9% 96.8% 97.2%
ViTSTR-Tiny [74] 93.5% 95.1% 91.7% 98.8% 99.0% 98.9% 92.3% 95.3% 95.5%
Average 96.2% 95.8% 96.4% 98.3% 99.1% 98.4% 92.4% 94.9% 96.4%

#Images from the RodoSol-ALPR dataset were not used for training the CR-NET and Fast-OCR models, as each character’s bounding box needs to be labeled for

training them.

STAR-Net: MRD3095

FIGURE 8 |
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STAR-Net: AWZ7648

TRBA: AWZ7648

TRBA: MRD3095

STAR-Net: DU166BF
TRBA: DU166BF

STAR-Net: *AS7603
TRBA: *AS7603

STAR-Net: VXSO4R
TRBA: NXSO4R

STAR-Net: HLP4594
TRBA: HLP4594

STAR-Net: PPR2D29
TRBA: PPR2D29

STAR-Net: *BDOD100
TRBA: *BD00100

STAR-Net: CKC3951
TRBA: CKC3951

STAR-Net: WOBR3249
TRBA: WOBR3249

EEIE Py W

STAR-Net: LEROI79
TRBA: LERUI79

Predictions made for 12 LP images by STAR-Net and TRBA, the two models that exhibited the highest average performance in the

intra-dataset experiments. Errors, if any, are highlighted in red. All LPs are well aligned because they were rectified before recognition, as detailed in

Section 4.3.

TABLE 6 | Average recognition rates obtained by STAR-Net and TRBA when trained with reduced portions of the original training data. Naturally,
images not included in the reduced training set were not used to generate synthetic images in the respective experiments.

Real i
¢4’ images 100% 50% 25% 10% 5% 1%

Model

STAR-Net (no synthetic) 95.3% 62.0% 18.3% 1.3% 0.2% 0.0%
STAR-Net (w/ synthetic) 97.9% 95.8% 94.7% 94.6% 93.6% 86.4%
TRBA (no synthetic) 93.7% 74.0% 23.9% 0.9% 0.2% 0.0%
TRBA (w/ synthetic) 97.9% 97.0% 96.0% 94.5% 94.3% 87.9%
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TABLE 7 | Average recognition rates and corresponding standard deviations obtained across all models and datasets with different types of images

included in the training set. The values shown below each image synthesis method represent the number of images used for that method. “Data aug.”

refers to online data augmentation (using standard transformations) applied to real images. The synergistic impact of the three image synthesis methods

in enhancing the overall results is evident. As creating synthetic images through character permutation and GAN relies on the existence of real images,

their integration is evaluated only in scenarios where real images are included in the training set.

Real Images Templates Permutation GAN
15k (+ data aug) 100k 300k 300k Average Average (rect.)
4 42.5% +13.9% 46.5% + 11.5%
v 84.5% +10.5% 88.1% + 8.1%
v v 91.4% + 3.6% 93.6% + 2.3%
v v 92.5% + 2.7% 94.7% + 1.3%
v v 93.2% + 2.1% 95.2% +1.5%
v v v 93.8% +1.6% 95.5% + 0.8%
v v v 94.0% +1.6% 95.6% +1.2%
v v v 94.1% + 1.7% 95.8% +1.0%
v 4 4 v 94.9% + 1.6% 96.4% + 1.1%

erably to enhancing the results. Notably, a substantial synergistic
effect is observed when combining these methods, pushing the
performance boundaries of recognition models applied to LPR.
To elaborate, the best recognition rates (i.e., 94.9% and 96.4%
for unrectified and rectified LPs, respectively), on average for all
models, were achieved by combining original data with images
synthesized in all three ways. To further support these findings,
paired t-tests confirmed statistically significant differences (p <
0.01) between the top-performing configurations in both setups.

When real images were combined solely with images gener-
ated through character permutation, as in [36, 38], the average
recognition rates obtained were 91.4% and 93.6% for unrectified
and rectified LPs, respectively. Combining real images with LP
templates alone, as in [24, 33], resulted in average recognition
rates of 92.5% and 94.7% for unrectified and rectified LPs,
respectively. Finally, the combination of real images with those
generated through a GAN model (in our case, pix2pix), as in [30,
32], yielded average recognition rates of 93.2% and 95.2% for
unrectified and rectified LPs, respectively. Note that training with
LP templates alone, without any real images, resulted in much
lower performance, with average recognition rates below 50%,
likely due to the significant domain difference between these
synthetic images and real LPs.

It is important to highlight how much better the results were
when training the models with both real and synthetic images
(i-e., 94.9% and 96.4%) compared to those obtained when simply
training the models with original images augmented by com-
mon transformations such as random rotation, random noise,
random cropping, random compression, and random changes in
brightness, saturation, and contrast (i.e., 84.5% and 88.1%).

It is also noteworthy that both the templates and the images
produced by the GAN model contributed significantly more
to improving the OCR models’ performance than the images
generated through character permutation. This observation
aligns with the fact that the images created via character
permutation share many characteristics with their original

counterparts (e.g., character position, compression artifacts,
camera noise, among others) despite having different character
sequences.

5.2.2 | Cross-Dataset Experiments

As the performance of LP recognition under the traditionally
adopted intra-dataset protocol—where models are trained and
tested on disjoint subsets of the same dataset—is rapidly improv-
ing, many researchers argue that a more realistic assessment
comes from cross-dataset experiments. Such experiments better
reflect real deployments where new cameras are deployed more
frequently than models are retrained [11, 20, 44, 55]. Accordingly,
Table 8 presents the results obtained by the same models used for
the intra-dataset evaluation (Table 5), now tested on four entirely
unseen datasets. No adjustments were made to the models, ensur-
ing a faithful representation of their cross-dataset performance.

These results demonstrate that the explored OCR models, trained
on a combination of real and synthetic images, maintain high
performance even in unseen scenarios. What most caught our
attention was the consistency of the TRBA model [73], as it
also reached the best results in this evaluation. On the other
hand, here the STAR-Net model (which tied with the best
results in the intra-dataset experiments) was outperformed by
RARE in all datasets. Based on these findings, we consider
the configuration combining YOLOv4-CSP for detection, CDCC-
NET for rectification, and TRBA for recognition as the most
effective setup in our benchmark. Accordingly, we adopt this
configuration for comparisons with state-of-the-art approaches in
the next section.

While subpar results were achieved on the CD-HARD dataset, it
is essential to recognize the inherent complexity of this dataset, as
implied by its name. Our analysis has revealed that the primary
challenge posed by this dataset lies in the diverse range of LP
layouts it encompasses. Images within the dataset feature vehicles
from various regions not represented in the datasets used for
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TABLE 8 |
The best results for each dataset are shown in bold.

Recognition rates obtained by all models on four public datasets that were not seen during the training stage (cross-dataset experiments).

m OpenALPR-EU PKU CD-HARD CLPD

#108 #2,253 #104 #1,200 Average
CNNG [2] 95.4% 98.6% 58.7% 92.9% 86.4%
CR-NET [42] 93.5% 99.5% 67.3% 92.9% 88.3%
CRNN [70] 97.2% 99.1% 56.7% 94.2% 86.8%
Fast-OCR [77] 98.1% 99.1% 69.2% 94.4% 90.2%
GRCNN [71] 97.2% 99.0% 57.7% 94.5% 87.1%
Holistic-CNN [75] 95.4% 99.0% 54.8% 94.0% 85.8%
Multi-Task [35] 96.3% 98.8% 54.8% 93.7% 85.9%
Multi-Task-LR [76] 94.4% 98.8% 53.8% 92.6% 84.9%
R*AM [67] 98.1% 99.4% 57.7% 93.8% 87.3%
RARE [68] 99.1% 99.1% 72.1% 95.2% 91.4%
Rosetta [72] 97.2% 99.2% 64.4% 93.8% 88.7%
STAR-Net [69] 98.1% 98.5% 71.2% 95.0% 90.7%
TRBA [73] 99.1% 99.4% 76.9% 96.2% 92.9%
ViTSTR-Base [74] 94.4% 99.0% 54.8% 93.4% 85.4%
ViTSTR-Small [74] 96.3% 97.4% 59.6% 94.3% 86.9%
ViTSTR-Tiny [74] 94.4% 97.6% 53.8% 92.3% 84.5%
Average 96.5% 98.8% 61.5% 93.9% 87.7%

model training, such as Dubai and New South Wales. The high
degree of tilt of many LPs would further hinder recognition if not
rectified before the recognition stage [18, 54].

5.2.3 | Comparison With Previous Works and
Commercial Systems

In Table 9, we compare the end-to-end results obtained by
the best-performing model combination in our benchmark with
those reported by state-of-the-art ALPR systems. Following com-
mon practice, to make the comparison fair, we only consider
systems evaluated in the same way as in our benchmark (see
details in Section 4.1). We also compare our results with those
obtained by [88] and [89], which are two commercial systems
widely adopted as baselines in the literature [4, 15].

It is impressive that, without using any heuristic rules or post-
processing, the benchmark’s top-performing setup (using TRBA
for recognition) achieves state-of-the-art performance on all
datasets except AOLP. Note that higher recognition rates (e.g.,
99.9%) were actually attained on the AOLP dataset using other
OCR models (see Table 5); however, we do not consider those
results here because the respective models did not outperform
TRBA on average across the full benchmark.

Two other aspects should be highlighted from the above results.
First, the positive influence of exploiting synthetic data is reaf-
firmed, as our system did not achieve the best results on most
datasets when solely using real data (plus simple data augmen-
tation) for training. Second, both the [88] and [89] commercial

systems performed poorly on the RodoSol-ALPR dataset (with
57.0% and 69.3% recognition rates, respectively). As shown in
Table 10, the primary reason for such underwhelming results is
that these systems do not work well for motorcycle LPs (which
are challenging in nature, having two rows of characters and
being smaller in size) or Mercosur LPs (which were adopted just a
few years ago). These observations underscore the importance of
comparing ALPR systems across diverse datasets that encompass
various collection methodologies, feature images of different
types of vehicles (including motorcycles), and exhibit different LP
layouts (including two-row configurations).

There are many recent works where the authors evaluated
the generalizability of the proposed methods in the PKU [52]
and CLPD [30] datasets, both collected in mainland China.
Hence, in Table 11, we compare the results obtained by these
methods (plus Sighthound and OpenALPR) with those reached
by the best-performing configuration in our benchmark. For each
approach, we also report the number of real Chinese LPs used
during training and indicate whether the method qualifies as
multinational, defined here as not being trained or fine-tuned
exclusively on Chinese LPs.

When exploring synthetic data for training the OCR model,
the end-to-end approach (YOLOv4-CSP + CDCC-NET + TRBA)
exhibited significantly superior performance compared to state-
of-the-art methods and commercial systems on both datasets.
These results are particularly noteworthy given that our training
dataset comprised only 506 real images of vehicles with Chinese
LPs, while most baseline models were trained on over 100,000
images from the CCPD dataset [7]. Indeed, this is one of the

14 of 21

IET Intelligent Transport Systems, 2025



TABLE 9 |

Recognition rates obtained by our best approach (which uses TRBA as the recognition model), state-of-the-art methods, and two

commercial systems in the eight datasets where part of the images was used for training the networks. The best results achieved in each dataset are

shown in bold.

Test set Caltech UCSD- SSIG- UFPR- RodoSol-
m Cars EnglishLP  Stills ChineseLP AOLP SegPlate ALPR ALPR
#46 #102 #60 #161 # 687 # 804 #1,800 #8,000 Average

[88] 87.0% 93.1% 96.7% 95.0% 95.5% 82.8% 62.9% 57.0% 83.7%
[90]° 91.3% - 98.3% - - - - - -
[18] - - - - 97.4% - 86.3% - -
[17] 97.8% 97.1% - - 98.9% - - - -
[1] (run 1)* 97.8% 96.1% 96.7% 98.1% 99.4% 98.8% 89.7% - -
[87] - - - - - - 90.3% - -
[18]? - - - - 99.0% - 91.8% - -
[38] 87.0% 88.2% 86.7% 96.9% 99.4% 95.8% 89.7% 95.6% 92.4%
[89]* 95.7% 98.0% 98.3% 96.9% 97.1% 93.0% 92.2% 69.3% 92.6%
[56] - - - - - - - 96.6% -
[10]° - - - - - - - 96.6% -
Ours 87.0% 91.2% 88.3% 98.1% 98.4% 98.1% 92.1% 96.8% 93.7%
[86] - - - - - 98.6% 92.3% - -
[59]° - - - - 99.0% - - 97.0% -
Ours + synthetic 97.8% 99.0% 98.3% 98.8% 98.8% 99.3% 94.0% 97.3% 97.9%

2 ALPR systems that rely on pre-defined heuristic rules (prior knowledge) to refine the predictions returned by the OCR model.
"The LP patches fed into the OCR model were cropped directly from the ground truth in [10, 59, 90].

TABLE 10 | Results achieved by two well-known commercial sys-
tems in the RodoSol-ALPR dataset. It can be seen that their capabilities
vary considerably according to the vehicle type and the LP layout.

Vehicle type LP layout
System Cars Motorcycles Brazilian Mercosur
[88] 81.3% 32.7% 63.9% 50.1%
[89] 95.6% 43.0% 90.7% 47.8%

reasons why this configuration did not outperform the baselines
even further, especially on the CLPD dataset, as several of
the recognition errors occurred on LP styles missing in our
training set but present in CCPD (e.g., 8-character green LPs
from electric vehicles). To assess the upper-bound performance
in a comparable setup, we conducted an additional experiment
by incorporating LP images from CCPD’s training set into the
training data, consistent with previous studies. In this setting, the
benchmark configuration achieved recognition rates of 97.3% on
CLPD and 99.5% on PKU, demonstrating its strong generalization
ability when trained with a more comprehensive dataset.

5.2.4 | Speed/Accuracy Trade-Off

The importance of devising methods that strike an optimal
balance between speed and accuracy has been highlighted in
recent ALPR research [5, 8, 81]. Thus, this section examines the

speed/accuracy trade-off of the OCR models explored in this
study. Figure 9 compares the average recognition rates reached
across datasets and the corresponding frames per second (FPS)
processing capabilities of all models, both in intra- and cross-
dataset setups.

In intra-dataset scenarios, the multi-task models, particularly
Multi-Task and CNNG, demonstrated an exceptional balance
between speed and accuracy. This can be attributed to their ability
to learn potential classes for each character position indepen-
dently, thereby avoiding confusion between similar letters and
digits in layouts where they appear in distinct positions. When
the primary goal is to achieve the utmost recognition rate across
various scenarios, STAR-Net is a more compelling option than
TRBA. This is due to STAR-Net achieving the same average
recognition rate as TRBA (97.9%) while processing more than
twice the FPS (141 vs. 59).

In cross-dataset scenarios, as outlined in Section 5.2.2, TRBA
once again emerged as the top performer in terms of average
recognition rate, standing alone this time, while STAR-Net was
outperformed by RARE. Concerning the trade-off between speed
and accuracy, the Fast-OCR model clearly excels, striking a com-
mendable balance between the two. Its relatively high accuracy
on unseen LPs can be attributed to its foundation on the YOLO
object detector. Consequently, it detects and recognizes each char-
acter individually, as opposed to predicting specific LP sequences
that mimic patterns from the training set. Conversely, the multi-
task models experienced a substantial decline in recognition rate
precisely because they learned to predict sequences based on
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TABLE 11 |
the CLPD and PKU datasets. These experiments assess the generalizability of these ALPR approaches, as no images from those datasets were used

Comparison of the recognition rates (%) obtained by our best approach (TRBA), state-of-the-art methods, and commercial systems on

for training. The methods categorized as “Multinational” were not trained or fine-tuned exclusively on Chinese LPs. Additional experiments show
that our pipeline further outperforms others even when trained using the CCPD dataset, highlighting its effectiveness in both low-resource and large-
scale scenarios.

Real images of Chinese

Approach LPs used for training = Multinational Recognition CLPD Rate PKU
[88] ?2 v/ 85.2% 89.3%
[30] 100,000+ 87.6% 90.5%
[2] 100,000+ v 88.5% 92.5%
Ours 506 v 90.1% 96.8%
[3] 4,444 91.4% 96.1%
[9] 10,000 91.7% -
[89] ? 91.8% 96.0%
[56] 100,000+ 92.4% 92.8%
(8] 100,000+ 93.2% -
[66] 100,000+ 94.0% 96.6%
[91] 100,000+ 94.5% -
[31] 100,000+ 94.8% -
[44] 100,000+ 95.3% 96.9%
Ours + synthetic 506 v 96.2% 99.4%
[Additional experiments]

Ours + CCPD’s training set 100,000+ v 94.5% 96.8%

Ours + CCPD’s training set + synthetic 100,000+ v 97.3% 99.5%

2 Approaches in which we applied the authors’ code and pre-trained models to obtain the reported results.

patterns observed in the training set, which often differ from those
observed in other datasets/scenarios.

Regarding the ViTSTR variants, it is worth noting that they
handle essentially the same number of FPS. This is because
the key differentiation among the ViTSTR-Base, -Small and -
Tiny models lies in their respective number of parameters and
computations required (FLOPS), rather than in the number of
FPS they can process [74].

6 | Conclusions

This paper delves into the integration of real and synthetic
data for improved LPR. Synthetic LP images were generated
using three widely adopted methodologies in the literature: a
rendering-based pipeline (templates), character permutation, and
a GAN model. We subjected 16 OCR models to a thorough
benchmarking process involving 12 public datasets acquired
from various regions. The experiments encompassed both intra-
and cross-dataset evaluations, including an examination of the
speed/accuracy trade-off of the models. To the best of our knowl-
edge, this constitutes the most extensive experimental evaluation
conducted in the field.

Several key findings emerge from our study. Primarily, the
massive use of synthetic data significantly improves the per-

formance of all models, both in intra- and cross-dataset sce-
narios. The quantitative and qualitative results demonstrated
the models’ robustness in effectively handling diverse LP lay-
outs, images with varying resolutions, and LPs with varying
numbers of characters arranged in one or two rows. Notably,
employing the top-performing OCR model (TRBA) yielded end-
to-end results that surpassed those reached by state-of-the-art
methods and established commercial systems. These results are
particularly noteworthy as our models were not specifically
trained for each LP layout, and we refrained from incorporating
heuristic rules to enhance the predictions for LPs from spe-
cific regions through post-processing—a departure from many
existing methods. This streamlined approach significantly sim-
plifies the process of incorporating support for LPs from new
regions or even markedly different LP styles within the same
region.

The conducted ablation studies provide two important insights.
First, each synthesis method contributes considerably to enhanc-
ing the results, and a substantial synergistic effect is observed
when they were combined. This finding contrasts with the
common practice of generating synthetic LPs exclusively through
a single methodology. Second, incorporating synthetic data into
the training set enables commendable results to be attained even
when using small fractions of the original data. This highlights
the effectiveness of synthetic data in overcoming the challenges
posed by scarce training data.
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FIGURE 9 | Average recognition rate across datasets and the corresponding FPS processing capabilities for all OCR models on intra-dataset (top)
and cross-dataset (bottom) experiments. The specific FPS value for each model is as follows: CNNG: 479; CR-NET: 189; CRNN: 343; Fast-OCR: 330;
GRCNN: 117; Holistic-CNN: 399; Multi-Task: 427; Multi-Task-LR: 463; RZAM: 63; RARE: 77; Rosetta: 219; STAR-Net: 141; TRBA: 59; ViTSTR-Base: 137;

ViTSTR-Small: 142; and ViTSTR-Tiny: 145.

Acknowledging the significance of both model speed and accu-
racy in real-world applications, we investigated how well the
models strike a balance between these two factors. Although the
multi-task models demonstrated an impressive speed/accuracy
trade-off in intra-dataset scenarios, this optimal balance did
not extend to cross-scenario scenarios. In such instances, these
models exhibited a more substantial decline in recognition rates
than most other models. Remarkably, in cross-dataset scenarios,
Fast-OCR stood out due to its great balance between speed
and accuracy. The effectiveness of Fast-OCR in cross-dataset
scenarios can be attributed to its character-level detection and
recognition approach, setting it apart from other models that
predict LP sequences by replicating patterns from the training
set. While this replication approach proves effective in similar
contexts, its efficacy tends to diminish when applied to different
regions or scenarios.

An additional noteworthy contribution of this work lies in our
commitment to granting access to all synthetic images generated
for training the models. We will also provide the corresponding
code for generating new LP images using each synthesis method.

It is essential to acknowledge the extensive number of exper-
iments conducted for this study. We carried out nine training
sessions for each of the 16 recognition models under investigation
(refer to Table 7), subjecting them to testing across various
seen and unseen datasets. We also explored the pix2pix model’s
capabilities for generating LP images and performed multiple
experiments related to the LP detection and corner detection
tasks, as reported in Tables 3, 4. Note that a single training process
for some models (e.g., TRBA and ViTSTR-Base) took several days
to complete on an NVIDIA Quadro RTX 8000 GPU, which is
currently one of the top-performing GPUs in the market.
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6.1 | Future Directions

Despite the comprehensive scope of our study and the signif-
icantly greater dataset diversity compared to prior work, we
recognize an important area for improvement regarding the
geographic, script, and layout variability of LPs. In particular, our
evaluation did not include datasets with non-Latin scripts, such
as Arabic or Cyrillic, nor LPs with radically different formats,
such as vertical or non-standard layouts. These omissions may
affect the global applicability of our findings and highlight the
need for future research to assess synthetic data generation
methods and OCR models in regions with alternative scripts and
diverse LP layouts.

Building on the demonstrated effectiveness of synthetic data for
accurately recognizing LPs in high-quality images captured under
diverse conditions and across multiple regions, we advocate for a
gradual shift in the focus of ALPR research. Specifically, there is a
pressing need to address the challenges posed by low-resolution
or low-quality LPs. These difficult scenarios—often encoun-
tered in criminal investigations where the LP remains unclear
across all video frames—remain significantly underexplored in
the current literature.

Future work should also consider pairing our synthetic data
pipeline with architecture-level innovations, such as neural
architecture search or lightweight adapters, to further improve
recognition performance, especially in unconstrained environ-
ments.

Although synthetic data is widely regarded as a privacy-
preserving solution, we acknowledge that its use in ALPR systems
does not eliminate broader ethical concerns, such as the potential
for misuse in large-scale surveillance or data manipulation. In
addition to providing an ethical use guideline in the public
code repository accompanying this work, we encourage future
research to investigate methods that improve traceability and
accountability in synthetic data pipelines. In particular, exploring
mechanisms such as data watermarking and auditing tools is
essential to support responsible use and reduce the risk of misuse
in sensitive surveillance contexts.
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Endnotes

IMost of the blank templates and character patches were taken from
https://platesmania.com/.

2As in previous works, the “Chinese” layout refers to LPs assigned to
vehicles registered in mainland China, while the “Taiwanese” layout
denotes LPs issued for vehicles registered in the Taiwan region.

3See a list of pix2pix implementations at https://phillipi.github.io/
pix2pix/. Our chosen implementation can be found at https://github.
com/affinelayer/pix2pix-tensorflow.

“https://github.com/taketwo/glasbey.

5The complete list of which images from each dataset were used for train-
ing, validation and testing can be downloaded at https://raysonlaroca.
github.io/supp/lpr-synthetic-data/splits.zip

To train the models, we excluded the few images from the ChineseLP
dataset that are also found in CLPD (both datasets include internet-
sourced images, as discussed by Laroca et al. [92]).

https://github.com/AlexeyAB/darknet/.
8https://keras.io/.

“https://github.com/roatienza/deep- text-recognition-benchmark/.
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