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Abstract. In this work, we present a robust and efficient solution for counting
and identifying train wagons using computer vision and deep learning. The pro-
posed solution is cost-effective and can easily replace solutions based on radio-
frequency identification (RFID), which are known to have high installation and
maintenance costs. According to our experiments, our two-stage methodology
achieves impressive results on real-world scenarios, i.e., 100% accuracy in the
counting stage and 99.7% recognition rate in the identification one. Moreover,
the system is able to automatically reject some of the train wagons successfully
counted, as they have damaged identification codes. The results achieved were
surprising considering that the proposed system requires low processing power
(i.e., it can run in low-end setups) and that we used a relatively small number of
images to train our Convolutional Neural Network (CNN) for character recog-
nition. The proposed method is registered, under number BR512020000808-9,
with the National Institute of Industrial Property (Brazil).

1. Introduction
In rail transport, it is increasingly common the development of systems that enable the
automatic counting and identification of wagons (also known as railway cars) during the
passage of a train through a station or its entry into a depot [2–6]. Given its importance,
this is a topic that has been addressed in the literature since the mid-1990s [7, 8].

Currently, most systems rely on radio-frequency identification (RFID) technology
for these tasks [5, 9]. This method provides fast and accurate results, however, installing
extra hardware on each wagon increases both installation and maintenance costs consider-
ably [9]. These high costs were also highlighted in the context of container identification
(which is very similar to the identification of wagons) by Verma et al. [2], who stated that
although modern containers have spaces reserved for the installation of RFID readers,
such readers are not used by any major ocean container carriers due to high costs.

On the other hand, dealing with the automatic counting and identification of train
wagons using computer vision has characteristics such as low cost and convenient installa-
tion, that is, convenient installation and high maintainability [4, 5]. Such an image-based
approach is possible due to the fact that all wagons are identified by an alphanumeric
code that contains information about the weight, type and subtype of the wagon [10, 11].
This code is painted on the front, rear and also on the sides of each wagon, with its exact
position in each part varying according to the type and characteristics of the wagon.

An article about the proposed system has been published in the October 2020 issue of Railway Gazette
International [1], the leading business journal for the worldwide rail industry.

https://cloud.3dissue.net/23598/23629/23815/41039/index.html?page=38
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The counting task is challenging due to the fact that each wagon that passes
through the camera must be correctly located and tracked so that it is not counted more
than once. The identification task is also difficult since there are no defined param-
eters for painting the code on the wagon, such as foreground and background colors;
type, font size, and character distance, etc. [6] (unlike energy meters [12, 13] or license
plates [14, 15], in which such parameters are well defined). Also, the identification code
can become dirty and damaged due to prolonged travel in the outdoors [5], and the corru-
gated surface of the wagon can make the projection of the 2D text slanted and jagged [2].

Another point to be taken into account is that the computational approach must be
very efficient [16, 17]; in other words, the system designed for these tasks should be able
to run on low-end setups, including embedded devices, as well as to collect information
from every single train passing through the control point where the camera is installed.

Deep-learning based techniques have been achieving surprising results and over-
coming various competitions and machine learning challenges [18–20], given the ability
of such techniques to learn representations or extract features automatically. Therefore,
in this work, we propose a robust and efficient system based on computer vision and deep
learning for automatic counting and identification of train wagons that eliminates the high
costs related to the use of RFID technology.

In our experimental evaluation, conducted using Full HD videos, our system
achieved impressive results, i.e., 100% accuracy in the counting stage and a mean recog-
nition rate of 99.7% in the identification task. The proposed approach automatically re-
jected 11.6% of the train wagons successfully counted, as they have damaged/illegible
identification codes. In a high-end GPU (an NVIDIA Titan Xp), our system is capable of
processing 16 frames per second (FPS), which means it could be deployed on embedded
devices located on site and still perform its functions in a matter of seconds or minutes.

The remainder of this paper is organized as follows. The dataset used in our
experiments is described in Section 2. The proposed methodology is briefly presented in
Section 3. We report and discuss the experiments in Section 4. Finally, conclusions and
future work are presented in Section 5.

2. The Dataset
For the training and evaluation of our system, we collected 14,935 images (extracted from
videos recorded at 30 FPS) from approximately 1,000 different wagons. These images
were acquired on five different days in four different locations between November 2019
and February 2020. Thus, as can be seen in Figure 1, we captured images of different
types of wagons and under different conditions. It should be noted that, in this work,
we use only daytime images for two main reasons: (i) an infrared camera is required
to acquire images at night so that the identification codes are legible; and (ii) special
authorization is required to record videos at certain control points outside business hours.

Note that (i) the region of interest (i.e., the region containing the identification
code) occupies a very small portion of the image; (ii) there are several blocks of text in
the wagon (for example, company names and slogans); and that (iii) the distance from the
camera to the wagons can vary significantly. These factors make it difficult to accurately
locate the codes in the images.

The images were acquired with four different cameras in Full HD resolution (i.e.,
1,920× 1,080 pixels). As these cameras belong to different price ranges, the images pre-



Figure 1. Sample images of the dataset used in this work.

sumably have different levels of quality. According to Kong et al. [16], a system for this
task must work with non-calibrated cameras (that is, with an arbitrary angle and position)
so that it can be deployed anywhere near any train track. When possible, we collected im-
ages of the same train with two different cameras, one on each side of the track, as Liya
& Jilin [21]. In this way, if the code region is damaged on only one side of the wagon, we
can still correctly identify the wagon since we have information redundancy.

Figure 2 shows some characteristic challenges present in the images collected
by us, as well as the great variability that exists in the identification codes in different
wagons. As can be seen, the region containing the characters may be or appear corrupted
by the presence of noise caused by wear, dirty materials, varied external lighting, etc.
In addition, the spacing between characters can vary considerably, that is, the distance
between characters is not uniform, which makes it difficult to segment characters using
heuristic-based or attention-based approaches.

Figure 2. Samples of alphanumeric codes that identify locomotives and wagons.



3. Proposed Approach
This section describes the proposed approach and is divided into two subsections, which
are related to the wagon counting and wagon identification tasks, respectively.

We leverage the high capability of Convolutional Neural Networks (CNNs), the
most popular type of deep networks, to handle both tasks. Note that our system operates
fully automatically; in other words, there is no human intervention during the operation
of the proposed method.

In this work, in order not to increase the overall cost of the system, we do not
correct possible distortions caused by the camera lenses (according to our experiments,
such distortions do not impair the performance of the proposed system), and also do not
apply preprocessing techniques to the images before feeding them to the networks. This
same procedure was adopted by Laroca et al. [15] and Kumar et al. [17].

3.1. Wagon Counting
Some approaches in the literature (for example, the one proposed by Liya & Jilin [21])
use different types of sensors to indicate the presence of trains at a certain control point.
Our solution, on the other hand, is based entirely on computer vision. In this way, imple-
mentation and maintenance costs are substantially lower [2, 4, 5, 9].

The wagon counting process is based first on the location of regions of interest in
the images recorded and then on the analysis and processing of these regions. More details
about this process are not disclosed in this work, as the methodology is registered (under
number BR512020000808-9) with the National Institute of Industrial Property (Brazil).

3.2. Wagon Identification
In Brazil, the standard coding for the identification of a train wagon is defined by the
ABNT NBR 11691:2019 standard [11]. According to this standard, the identification code
is composed of exactly 3 letters and 7 digits (e.g., HFE-094063-1). However, there may
exist a letter in the eleventh position (e.g., FHD-643258-1L) that indicates the country’s
region in which the wagon is registered – we treat this last letter as optional because it was
used for many years in previous standards. The last of the 7 digits is a check digit, i.e.,
it is generated by an algorithm based on the previous digits. Locomotives, on the other
hand, are identified by 3 or 4 digit codes (for example, 672 and 8330).

In order to identify a wagon, it is sufficient to recognize only the digits since
the letters identify characteristics related to the type, subtype, and maximum permissible
weight of the wagon [7, 10, 11]. Nevertheless, in this work, we train a network capable of
locating and classifying both letters and digits, so that our system can be easily adapted
to identify wagons from other regions/countries where letter recognition is also required.
The network was chosen based on promising results reported in related Optical Character
Recognition (OCR) tasks, such as image-based automatic meter reading [22] and license
plate recognition [23]. Through heuristic rules, we adapt the results (or predictions) pro-
duced by the network according to the patterns described in the previous paragraph.

Considering that (i) the region of interest may have been incorrectly located in the
previous stage and that (ii) the wagon identification code may be damaged and, conse-
quently, illegible, we reject the predictions returned by the network in cases where several
characters have been predicted with low confidence values and also in cases where the
predicted check digit does not correspond with the expected one [10, 11].



As soon as all wagons of a train pass through a control point (usually a train
station or a train depot), the system generates a mosaic that summarizes all information
(i.e., the identification code of each wagon and its respective position in the composition)
about that train. According to Kumar et al. [17], the generation of mosaics is important
because it results in a large panorama of the train in which all its wagons are visible as a
single block.

The above information is sent to a server/database in the cloud. If there are any
problems, automatically detected by the system itself, the operator can check the mosaic
with the images of the train wagons and, if necessary, make some adjustments to the
predictions or even inform other sectors of the railway company about problems in the
painting of the identification code (e.g., graffiti) on a given wagon.

4. Experiments
In this section, we describe the experiments carried out to verify the robustness and effec-
tiveness of the proposed method.

4.1. Setup
All experiments were performed on a computer with an AMD Ryzen Threadripper 1920X
3.5GHz CPU, 64 GB of RAM and an NVIDIA Titan Xp GPU.

In the wagon counting stage, all 14,935 images collected by us were used either
for training or for evaluating the proposed algorithm. In the experiments related to the
wagon identification task, only 1,000 of these images were employed, given the great ef-
fort required to manually annotate the bounding box (x, y, w, h) of each character in the
identification code. Such an annotation process is necessary for training our OCR net-
work, which is based on the YOLO object detector [24].

To eliminate any bias in the training process of our system, we adopted a leave-
one-day-out evaluation protocol, in which we employ images from all days except one
for training, while the images from the excluded day are used for testing. This procedure
is performed for each different day on which we collected images. In the results section,
we report the mean values of accuracy (for the counting task) and recognition rate (for
identification) achieved in these 5 evaluations (we collected images on 5 different days).

4.2. Results
This section reports the results achieved and is divided into two subsections, which are
related to the wagon counting and wagon identification tasks, respectively.

4.2.1. Wagon Counting

Through the detection and tracking of the regions of interest (here, the identification
codes) in the videos acquired by us, the proposed algorithm achieved 100% accuracy
in this stage, regardless of the camera used and the image/wagon conditions. To achieve
such an impressive result, we explored heuristic rules when processing predictions re-
garding consecutive frames, ensuring that the number of wagons is correct even if the
identification code of a given wagon has not been located.

Some detection results are shown in Figure 3. As can be seen, well-located pre-
dictions were obtained in wagons of different types, colors and conditions. It is worth



noting that the number of wagons does not affect the results obtained by the proposed
system, as it is capable of efficiently and robustly processing videos of different sizes.
In the videos collected by us, the smallest train composition is composed of 34 wagons,
while the largest is composed of 135 (≈ 4 times larger).

Figure 3. Examples of the detection results obtained for the wagon counting task.

4.2.2. Wagon Identification

The results obtained in this stage are shown in Table 1 (in the second column). As can
be seen, our approach reached an average recognition rate of 97.3%, ranging from 94.3%
to 99.2%, based on which videos were used for training and testing. Such results are
surprising considering that we used less than 1,000 images for training the OCR network,
as detailed in Section 4.1. According to Figure 4, the proposed method successfully
recognized identification codes, regardless of the color and type of the respective wagons.

Table 1. Wagon identification results.

Day
Recognition Rate

(Without Rejection) Rejection Rate
Recognition Rate
(With Rejection)

# 1 95.6% 15.0% 99.0%
# 2 98.9% 11.4% 100.0%
# 3 94.3% 19.3% 99.5%
# 4 99.2% 4.8% 100.0%
# 5 98.5% 7.4% 100.0%

Average 97.3% 11.6% 99.7%

Regarding the errors, we noticed that they occurred mostly in identification codes
with problems in painting. Some representative examples are shown in Figure 5.

As can be seen in Figure 6, generally fewer characters are predicted by the OCR
network when part of the identification code is damaged or illegible. For example, in the
middle image of Figure 6 the last character is not visible, while in the rightmost image the
first two characters are occluded by graffiti. It should be noted that such cases are easily
rejected taking into account the coding standard defined in [11].

In this sense, we manually labeled all wagons with problems in the identification
code as ‘damaged/illegible’ and disregard errors in their codes in a second assessment.



Figure 4. Examples of train wagons correctly identified by the proposed system.

Figure 5. Examples of damaged/illegible identification codes. 3

Figure 6. Examples of predictions obtained on damaged identification codes.

The results can be seen in the last column of Table 1. Considering a rejection rate of
11.6%, our algorithm achieved an impressive recognition rate of 99.7%. Based on these
results, the proposed system is very robust and capable of correctly recognizing practically
all legible codes, regardless of environmental factors and the distance from the camera.

It is important to highlight that problems in the painting of the identification codes
can be easily solved by the railway companies, both operationally and economically, with
a new painting and periodic maintenance in such regions. Furthermore, through the rejec-
tion mechanism, the proposed system automatically identifies which wagons have dam-
aged codes (based on the position of these wagons in the train composition).

Figure 7 shows a mosaic generated by our system after processing all images of
a train that passed through the control point where the camera is installed. Note that the
regions rejected by the system (those shown in red) usually refer to damaged identifica-



tion codes. In some situations, it was not possible to detect any region of interest (i.e.,
identification code); thus, we indicate such cases in the mosaic with a probable frame
where the wagon code would be located (e.g., row 2, column 3 of Figure 7). In blue, we
show ‘damaged’ codes that were still recognized correctly by the system.

Figure 7. Mosaic generated automatically by the system after a train passes the control
point where the camera is installed.

We emphasize that the maintenance of the identification codes is essential for the
proposed system to obtain optimal results, as illustrated in Figure 8.

Figure 8. Composition with well-maintained identification codes results in perfect wagon
counting and identification.

Finally, in Figure 9, we show two mosaics related to a train composition that was
recorded by two cameras, one on each side of the track. Note that the system presented 8
errors in the recognition of 6 wagons. By combining the results (through heuristic rules),
the number of errors is reduced to just 2 wagons since on one side of the wagon the
identification code is recognizable.



Figure 9. Mosaics of the same train composition recorded by two cameras, one on each
side of the track.

5. Conclusions and Future Work
In this work, we presented a robust and efficient system based on computer vision and
deep learning for automatic counting and identification of train wagons. Compared
with RFID-based methods, the proposed approach is economically advantageous since
it has lower installation and maintenance costs. Our system is registered, under number
BR512020000808-9, with the National Institute of Industrial Property (Brazil).

The robustness of the proposed method is remarkable, as it perfectly counted the
number of wagons on all videos used in our experiments, and achieved a mean recogni-
tion rate of 99.7% (considering a rejection rate of 11.6%), even though it was trained in
relatively few images and being able to process 16 images per second on a high-end GPU.
We would like to emphasize that our system is likely to become even more robust if more
videos (and, consequently, images) are used for training its networks.

As future work, we intend to carry out experiments in more challenging scenarios,
such as images obtained at night, rainy, and foggy periods. In addition, we plan to ship our
solution in the field, carefully defining the best hardware in terms of cost-benefit and also
the best position of each camera in order to avoid shadows, reflections and vandalism.
Finally, we want to explore more advanced data augmentation techniques (e.g., those
presented in [25, 26]) in order to achieve even better results without having to manually
label more thousands of images for training our system.
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